Spaces:
Running
on
Zero
Running
on
Zero
File size: 21,340 Bytes
5a70430 5857c76 5a70430 ee5186b 5a70430 d2d2757 5a70430 ee5186b 5a70430 ee5186b cb494fe 151bae0 cb494fe 5a70430 cb494fe 5a70430 cb494fe 5a70430 cb494fe 5a70430 cb494fe 5a70430 cb494fe 5a70430 cb494fe 2a31e71 cb494fe 2a31e71 cb494fe 2a31e71 cb494fe 2a31e71 cb494fe 2a31e71 cb494fe 2a31e71 94d22ce 2a31e71 cb494fe 2a31e71 cb494fe 94d22ce cb494fe 2a31e71 cb494fe 2a31e71 cb494fe 2a31e71 cb494fe 2a31e71 cb494fe 2a31e71 cb494fe 2a31e71 cb494fe 2a31e71 94d22ce cb494fe ee5186b 2a31e71 cb494fe 2a31e71 cb494fe 2a31e71 cb494fe 2a31e71 cb494fe 2a31e71 cb494fe 2a31e71 94d22ce cb494fe 2a31e71 94d22ce cb494fe 2a31e71 94d22ce cb494fe 2a31e71 cb494fe 2a31e71 cb494fe 2a31e71 cb494fe 2a31e71 cb494fe 2a31e71 cb494fe 2a31e71 cb494fe 2a31e71 cb494fe 2a31e71 cb494fe 2a31e71 cb494fe 2a31e71 cb494fe 2a31e71 cb494fe 2a31e71 cb494fe 2a31e71 cb494fe 2a31e71 cb494fe 2a31e71 cb494fe 2a31e71 cb494fe 2a31e71 cb494fe 5a70430 cb494fe 2a31e71 cb494fe 2a31e71 cb494fe 2a31e71 cb494fe 5a70430 cb494fe 5a70430 cb494fe 5a70430 cb494fe 5a70430 cb494fe 5a70430 cb494fe 5a70430 cb494fe 2a31e71 cb494fe 5a70430 cb494fe 94d22ce 5a70430 cb494fe 5a70430 cb494fe 5a70430 ee5186b cb494fe 5a70430 cb494fe 5a70430 2a31e71 cb494fe ee5186b cb494fe 8048e35 cb494fe ee5186b 5a70430 cb494fe 5a70430 cb494fe 94d22ce 5a70430 cb494fe 5a70430 ee5186b 5a70430 cb494fe 94d22ce 5a70430 cb494fe 2a31e71 5a70430 cb494fe 5a70430 2a31e71 cb494fe 94d22ce cb494fe 2a31e71 cb494fe 5a70430 94d22ce cb494fe 2a31e71 94d22ce 2a31e71 cb494fe 2a31e71 cb494fe 2a31e71 cb494fe 2a31e71 cb494fe 2a31e71 cb494fe 2a31e71 cb494fe 94d22ce cb494fe ee5186b 94d22ce cb494fe 5a70430 94d22ce cb494fe 5a70430 cb494fe ee5186b cb494fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 |
import os
import json
import copy
import math
import time
import random
import logging
import numpy as np
from typing import Any, Dict, List, Optional, Union
import torch
from PIL import Image
import gradio as gr
import spaces
from diffusers import (
DiffusionPipeline,
FlowMatchEulerDiscreteScheduler)
from huggingface_hub import (
hf_hub_download,
HfFileSystem,
ModelCard,
snapshot_download)
from diffusers.utils import load_image
import requests
from urllib.parse import urlparse
import tempfile
import shutil
import uuid
import zipfile
# META: CUDA_CHECK / GPU_INFO
print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES"))
print("torch.__version__ =", torch.__version__)
print("torch.version.cuda =", torch.version.cuda)
print("cuda available:", torch.cuda.is_available())
print("cuda device count:", torch.cuda.device_count())
if torch.cuda.is_available():
print("current device:", torch.cuda.current_device())
print("device name:", torch.cuda.get_device_name(torch.cuda.current_device()))
print("Using device:", processing_device)
# List of predefined style models (formerly LoRAs)
style_definitions = [
{
"thumbnail_url": "https://huggingface.co/prithivMLmods/Qwen-Image-Studio-Realism/resolve/main/images/2.png",
"style_name": "Studio Realism",
"repo_id": "prithivMLmods/Qwen-Image-Studio-Realism",
"weight_file": "qwen-studio-realism.safetensors",
"activation_phrase": "Studio Realism"
},
{
"thumbnail_url": "https://huggingface.co/prithivMLmods/Qwen-Image-Sketch-Smudge/resolve/main/images/1.png",
"style_name": "Sketch Smudge",
"repo_id": "prithivMLmods/Qwen-Image-Sketch-Smudge",
"weight_file": "qwen-sketch-smudge.safetensors",
"activation_phrase": "Sketch Smudge"
},
{
"thumbnail_url": "https://huggingface.co/prithivMLmods/Qwen-Image-Anime-LoRA/resolve/main/images/1.png",
"style_name": "Qwen Anime",
"repo_id": "prithivMLmods/Qwen-Image-Anime-LoRA",
"weight_file": "qwen-anime.safetensors",
"activation_phrase": "Qwen Anime"
},
{
"thumbnail_url": "https://huggingface.co/prithivMLmods/Qwen-Image-Synthetic-Face/resolve/main/images/2.png",
"style_name": "Synthetic Face",
"repo_id": "prithivMLmods/Qwen-Image-Synthetic-Face",
"weight_file": "qwen-synthetic-face.safetensors",
"activation_phrase": "Synthetic Face"
},
{
"thumbnail_url": "https://huggingface.co/prithivMLmods/Qwen-Image-Fragmented-Portraiture/resolve/main/images/3.png",
"style_name": "Fragmented Portraiture",
"repo_id": "prithivMLmods/Qwen-Image-Fragmented-Portraiture",
"weight_file": "qwen-fragmented-portraiture.safetensors",
"activation_phrase": "Fragmented Portraiture"
},
]
# --- Model Initialization ---
model_precision = torch.bfloat16
processing_device = "cuda" if torch.cuda.is_available() else "cpu"
foundation_model_id = "Qwen/Qwen-Image"
# Sampler configuration from the Qwen-Image-Lightning repository
sampler_settings = {
"base_image_seq_len": 256,
"base_shift": math.log(3),
"invert_sigmas": False,
"max_image_seq_len": 8192,
"max_shift": math.log(3),
"num_train_timesteps": 1000,
"shift": 1.0,
"shift_terminal": None,
"stochastic_sampling": False,
"time_shift_type": "exponential",
"use_beta_sigmas": False,
"use_dynamic_shifting": True,
"use_exponential_sigmas": False,
"use_karras_sigmas": False,
}
sampler = FlowMatchEulerDiscreteScheduler.from_config(sampler_settings)
diffusion_pipeline = DiffusionPipeline.from_pretrained(
foundation_model_id, scheduler=sampler, torch_dtype=model_precision
).to(processing_device)
# Information for the fast generation LoRA
FAST_GENERATION_LORA_REPO = "lightx2v/Qwen-Image-Lightning"
FAST_GENERATION_LORA_WEIGHTS = "Qwen-Image-Lightning-8steps-V1.0.safetensors"
MAX_SEED_VALUE = np.iinfo(np.int32).max
class ExecutionTimer:
"""A context manager to time a block of code."""
def __init__(self, activity_name=""):
self.activity_name = activity_name
def __enter__(self):
self.start_time = time.time()
return self
def __exit__(self, exc_type, exc_value, traceback):
self.end_time = time.time()
self.elapsed_time = self.end_time - self.start_time
activity_log = f" for {self.activity_name}" if self.activity_name else ""
print(f"Elapsed time{activity_log}: {self.elapsed_time:.6f} seconds")
def get_dimensions_from_ratio(aspect_ratio_str):
"""Converts an aspect ratio string to a (width, height) tuple."""
ratios = {
"1:1": (1024, 1024),
"16:9": (1152, 640),
"9:16": (640, 1152),
"4:3": (1024, 768),
"3:4": (768, 1024),
"3:2": (1024, 688),
"2:3": (688, 1024),
}
return ratios.get(aspect_ratio_str, (1024, 1024))
def on_style_select(event_data: gr.SelectData, current_aspect_ratio):
"""Handles the user selecting a style from the gallery."""
selected_style = style_definitions[event_data.index]
new_placeholder = f"Type a prompt for {selected_style['style_name']}"
repo_id = selected_style["repo_id"]
updated_info_text = f"### Selected: [{repo_id}](https://huggingface.co/{repo_id}) ✨"
# Update aspect ratio if specified in the style's configuration
if "aspect" in selected_style:
if selected_style["aspect"] == "portrait":
current_aspect_ratio = "9:16"
elif selected_style["aspect"] == "landscape":
current_aspect_ratio = "16:9"
else:
current_aspect_ratio = "1:1"
return (
gr.update(placeholder=new_placeholder),
updated_info_text,
event_data.index,
current_aspect_ratio,
)
def on_mode_change(generation_mode):
"""Updates UI elements based on the selected generation mode (Speed/Quality)."""
if generation_mode == "Speed (8 steps)":
return gr.update(value="Speed mode selected - 8 steps with Lightning LoRA"), 8, 1.0
else:
return gr.update(value="Quality mode selected - 45 steps for best quality"), 45, 3.5
@spaces.GPU(duration=70)
def execute_image_generation(full_prompt, steps, seed_val, cfg, width, height, negative_prompt=""):
"""Generates an image using the diffusion pipeline."""
diffusion_pipeline.to("cuda")
generator = torch.Generator(device="cuda").manual_seed(seed_val)
with ExecutionTimer("Image Generation"):
generated_image = diffusion_pipeline(
prompt=full_prompt,
negative_prompt=negative_prompt,
num_inference_steps=steps,
true_cfg_scale=cfg,
width=width,
height=height,
generator=generator,
).images[0]
return generated_image
@spaces.GPU(duration=70)
def handle_generate_request(prompt_text, cfg, steps, style_idx, use_random_seed, seed_val, aspect_ratio_str, style_scale, generation_mode, progress=gr.Progress(track_tqdm=True)):
"""Main function to handle a user's image generation request."""
if style_idx is None:
raise gr.Error("You must select a style before generating an image.")
selected_style = style_definitions[style_idx]
style_repo_path = selected_style["repo_id"]
activation_phrase = selected_style["activation_phrase"]
# Combine the user prompt with the style's activation phrase
if activation_phrase:
position = selected_style.get("trigger_position", "prepend")
if position == "prepend":
full_prompt = f"{activation_phrase} {prompt_text}"
else:
full_prompt = f"{prompt_text} {activation_phrase}"
else:
full_prompt = prompt_text
# Always unload existing adapters to start fresh
with ExecutionTimer("Unloading existing adapters"):
diffusion_pipeline.unload_lora_weights()
# Load adapters based on the selected generation mode
if generation_mode == "Speed (8 steps)":
with ExecutionTimer("Loading Lightning and Style adapters"):
# Load the fast generation adapter first
diffusion_pipeline.load_lora_weights(
FAST_GENERATION_LORA_REPO,
weight_name=FAST_GENERATION_LORA_WEIGHTS,
adapter_name="lightning"
)
# Load the selected style adapter
weight_file = selected_style.get("weight_file", None)
diffusion_pipeline.load_lora_weights(
style_repo_path,
weight_name=weight_file,
low_cpu_mem_usage=True,
adapter_name="style"
)
# Set both adapters active with their respective weights
diffusion_pipeline.set_adapters(["lightning", "style"], adapter_weights=[1.0, style_scale])
else: # Quality mode
with ExecutionTimer(f"Loading adapter weights for {selected_style['style_name']}"):
weight_file = selected_style.get("weight_file", None)
diffusion_pipeline.load_lora_weights(
style_repo_path,
weight_name=weight_file,
low_cpu_mem_usage=True
)
# Set the seed for reproducibility
with ExecutionTimer("Setting seed"):
if use_random_seed:
seed_val = random.randint(0, MAX_SEED_VALUE)
# Get image dimensions
width, height = get_dimensions_from_ratio(aspect_ratio_str)
# Generate the final image
final_image = execute_image_generation(full_prompt, steps, seed_val, cfg, width, height)
return final_image, seed_val
def fetch_hf_safetensors_details(repo_link):
"""Fetches details of a LoRA from a Hugging Face repository."""
split_link = repo_link.split("/")
if len(split_link) != 2:
raise ValueError("Invalid Hugging Face repository link format.")
print(f"Attempting to load repository: {repo_link}")
model_card = ModelCard.load(repo_link)
base_model = model_card.data.get("base_model")
print(f"Base model identified: {base_model}")
# Validate that the LoRA is compatible with Qwen-Image
acceptable_models = {"Qwen/Qwen-Image"}
models_to_check = base_model if isinstance(base_model, list) else [base_model]
if not any(model in acceptable_models for model in models_to_check):
raise TypeError("The provided model is not a Qwen-Image compatible LoRA.")
# Extract metadata from the model card
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url")
activation_phrase = model_card.data.get("instance_prompt", "")
image_url = f"https://huggingface.co/{repo_link}/resolve/main/{image_path}" if image_path else None
# Find the .safetensors file in the repository
fs = HfFileSystem()
try:
repo_files = fs.ls(repo_link, detail=False)
safetensors_filename = None
for file_path in repo_files:
filename = file_path.split("/")[-1]
if filename.endswith(".safetensors"):
safetensors_filename = filename
break
if not safetensors_filename:
raise FileNotFoundError("No .safetensors file was found in the repository.")
except Exception as e:
print(e)
raise IOError("Could not access the Hugging Face repository or find a valid .safetensors file.")
return split_link[1], repo_link, safetensors_filename, activation_phrase, image_url
def parse_custom_model_source(source_text):
"""Parses a user-provided link to a custom LoRA."""
print(f"Parsing custom model source: {source_text}")
if source_text.endswith('.safetensors') and 'huggingface.co' in source_text:
parts = source_text.split('/')
try:
hf_index = parts.index('huggingface.co')
username = parts[hf_index + 1]
repo_name = parts[hf_index + 2]
repo_id = f"{username}/{repo_name}"
safetensors_filename = parts[-1]
try:
model_card = ModelCard.load(repo_id)
activation_phrase = model_card.data.get("instance_prompt", "")
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url")
image_url = f"https://huggingface.co/{repo_id}/resolve/main/{image_path}" if image_path else None
except Exception:
activation_phrase = ""
image_url = None
return repo_name, repo_id, safetensors_filename, activation_phrase, image_url
except ValueError:
raise ValueError("Invalid .safetensors URL format.")
if source_text.startswith("https://"):
parsed_url = urlparse(source_text)
if "huggingface.co" in parsed_url.netloc:
repo_link = parsed_url.path.strip("/")
return fetch_hf_safetensors_details(repo_link)
# Assume it's a direct repo path like "username/repo-name"
return fetch_hf_safetensors_details(source_text)
def add_custom_style_model(custom_model_path):
"""Adds a custom LoRA provided by the user to the session."""
global style_definitions
if custom_model_path:
try:
style_name, repo_id, weight_file, activation_phrase, thumbnail_url = parse_custom_model_source(custom_model_path)
print(f"Successfully loaded custom style: {repo_id}")
card_html = f'''
<div class="custom_lora_card">
<span>Loaded custom style:</span>
<div class="card_internal">
<img src="{thumbnail_url}" alt="{style_name}" />
<div>
<h3>{style_name}</h3>
<small>{"Activation phrase: <code><b>"+activation_phrase+"</b></code>" if activation_phrase else "No activation phrase found. If required, include it in your prompt."}<br></small>
</div>
</div>
</div>
'''
# Check if this style already exists
existing_item_index = next((index for (index, item) in enumerate(style_definitions) if item['repo_id'] == repo_id), None)
if existing_item_index is None:
new_style_item = {
"thumbnail_url": thumbnail_url,
"style_name": style_name,
"repo_id": repo_id,
"weight_file": weight_file,
"activation_phrase": activation_phrase
}
style_definitions.append(new_style_item)
existing_item_index = len(style_definitions) - 1
return gr.update(visible=True, value=card_html), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {weight_file}", existing_item_index, activation_phrase
except Exception as e:
gr.Warning(f"Failed to load custom style. Error: {e}")
error_message = f"Invalid input. Could not load the specified style. Please check the link or repository path."
return gr.update(visible=True, value=error_message), gr.update(visible=True), gr.update(), "", None, ""
# If input is empty, hide the custom section
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
def remove_custom_style_model():
"""Resets the UI when a custom LoRA is removed."""
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
# --- Gradio UI Definition ---
app_css = '''
#gen_btn{height: 100%}
#gen_column{align-self: stretch}
#title{text-align: center}
#title h1{font-size: 3em; display:inline-flex; align-items:center}
#title img{width: 100px; margin-right: 0.5em}
#gallery .grid-wrap{height: 10vh}
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
.card_internal{display: flex;height: 100px;margin-top: .5em}
.card_internal img{margin-right: 1em; object-fit: cover;}
.styler{--form-gap-width: 0px !important}
#speed_status{padding: .5em; border-radius: 5px; margin: 1em 0}
.custom_lora_card{padding: 1em; border: 1px solid var(--border-color-primary); border-radius: var(--radius-lg)}
'''
with gr.Blocks(theme="bethecloud/storj_theme", css=app_css, delete_cache=(120, 120)) as web_interface:
main_title = gr.HTML("""<h1>Qwen Image LoRA DLC❤️🔥</h1>""", elem_id="title")
selected_style_index = gr.State(None)
with gr.Row():
with gr.Column(scale=3):
prompt_textbox = gr.Textbox(label="Prompt", lines=1, placeholder="Select a style to begin...")
with gr.Column(scale=1, elem_id="gen_column"):
generate_btn = gr.Button("Generate", variant="primary", elem_id="gen_btn")
with gr.Row():
with gr.Column():
selected_style_info = gr.Markdown("")
style_gallery = gr.Gallery(
[(item["thumbnail_url"], item["style_name"]) for item in style_definitions],
label="Style Gallery",
allow_preview=False,
columns=3,
elem_id="gallery",
show_share_button=False
)
with gr.Group():
custom_style_textbox = gr.Textbox(label="Load Custom Style", info="Enter a Hugging Face repository path (e.g., username/repo-name)", placeholder="username/qwen-image-custom-style")
gr.Markdown("[Find More Qwen-Image Styles Here](https://huggingface.co/models?other=base_model:adapter:Qwen/Qwen-Image)", elem_id="lora_list")
custom_style_info_html = gr.HTML(visible=False)
remove_custom_style_btn = gr.Button("Remove Custom Style", visible=False)
with gr.Column():
output_image_display = gr.Image(label="Generated Image")
with gr.Row():
aspect_ratio_dropdown = gr.Dropdown(
label="Aspect Ratio",
choices=["1:1", "16:9", "9:16", "4:3", "3:4", "3:2", "2:3"],
value="1:1"
)
with gr.Row():
generation_mode_dropdown = gr.Dropdown(
label="Generation Mode",
choices=["Speed (8 steps)", "Quality (45 steps)"],
value="Quality (45 steps)",
)
generation_mode_status_display = gr.Markdown("Quality mode active", elem_id="speed_status")
with gr.Row():
with gr.Accordion("Advanced Settings", open=False):
with gr.Column():
with gr.Row():
cfg_scale_slider = gr.Slider(
label="Guidance Scale (CFG)",
minimum=1.0,
maximum=5.0,
step=0.1,
value=3.5,
info="Adjusts how strictly the model follows the prompt. Lower for speed, higher for quality."
)
steps_slider = gr.Slider(
label="Inference Steps",
minimum=4,
maximum=50,
step=1,
value=45,
info="Number of steps for the generation process. Automatically set by Generation Mode."
)
with gr.Row():
randomize_seed_checkbox = gr.Checkbox(True, label="Use Random Seed")
seed_slider = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED_VALUE, step=1, value=0, randomize=True)
style_scale_slider = gr.Slider(label="Style Strength", minimum=0, maximum=2, step=0.01, value=1.0)
# --- Event Handlers ---
style_gallery.select(
on_style_select,
inputs=[aspect_ratio_dropdown],
outputs=[prompt_textbox, selected_style_info, selected_style_index, aspect_ratio_dropdown]
)
generation_mode_dropdown.change(
on_mode_change,
inputs=[generation_mode_dropdown],
outputs=[generation_mode_status_display, steps_slider, cfg_scale_slider]
)
custom_style_textbox.submit(
add_custom_style_model,
inputs=[custom_style_textbox],
outputs=[custom_style_info_html, remove_custom_style_btn, style_gallery, selected_style_info, selected_style_index, prompt_textbox]
)
remove_custom_style_btn.click(
remove_custom_style_model,
outputs=[custom_style_info_html, remove_custom_style_btn, style_gallery, selected_style_info, selected_style_index, custom_style_textbox]
)
# Combined trigger for generation
generate_triggers = [generate_btn.click, prompt_textbox.submit]
gr.on(
triggers=generate_triggers,
fn=handle_generate_request,
inputs=[prompt_textbox, cfg_scale_slider, steps_slider, selected_style_index, randomize_seed_checkbox, seed_slider, aspect_ratio_dropdown, style_scale_slider, generation_mode_dropdown],
outputs=[output_image_display, seed_slider]
)
web_interface.queue()
web_interface.launch(share=False, ssr_mode=False, show_error=True) |