Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import random | |
| import uuid | |
| import json | |
| import time | |
| import asyncio | |
| from threading import Thread | |
| import gradio as gr | |
| import spaces | |
| import torch | |
| import numpy as np | |
| from PIL import Image | |
| import cv2 | |
| from transformers import ( | |
| Qwen2_5_VLForConditionalGeneration, | |
| LlavaOnevisionForConditionalGeneration, | |
| AutoProcessor, | |
| TextIteratorStreamer, | |
| ) | |
| from transformers.image_utils import load_image | |
| # Constants for text generation | |
| MAX_MAX_NEW_TOKENS = 2048 | |
| DEFAULT_MAX_NEW_TOKENS = 1024 | |
| MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
| device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
| # Load Camel-Doc-OCR-080125 | |
| MODEL_ID_M = "prithivMLmods/Camel-Doc-OCR-080125" | |
| processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True) | |
| model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID_M, trust_remote_code=True, | |
| torch_dtype=torch.float16).to(device).eval() | |
| # Load ViGaL-7B | |
| MODEL_ID_X = "yunfeixie/ViGaL-7B" | |
| processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True) | |
| model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID_X, trust_remote_code=True, | |
| torch_dtype=torch.float16).to(device).eval() | |
| # Load prithivMLmods/WR30a-Deep-7B-0711 | |
| MODEL_ID_T = "NCSOFT/VARCO-VISION-2.0-14B" | |
| processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True) | |
| model_t = LlavaOnevisionForConditionalGeneration.from_pretrained( | |
| MODEL_ID_T, trust_remote_code=True, | |
| torch_dtype=torch.float16).to(device).eval() | |
| # Load Visionary-R1 | |
| MODEL_ID_O = "maifoundations/Visionary-R1" | |
| processor_o = AutoProcessor.from_pretrained(MODEL_ID_O, trust_remote_code=True) | |
| model_o = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID_O, trust_remote_code=True, | |
| torch_dtype=torch.float16).to(device).eval() | |
| # Function to downsample video frames | |
| def downsample_video(video_path): | |
| """ | |
| Downsamples the video to evenly spaced frames. | |
| Each frame is returned as a PIL image along with its timestamp. | |
| """ | |
| vidcap = cv2.VideoCapture(video_path) | |
| total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
| fps = vidcap.get(cv2.CAP_PROP_FPS) | |
| frames = [] | |
| frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int) | |
| for i in frame_indices: | |
| vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) | |
| success, image = vidcap.read() | |
| if success: | |
| image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
| pil_image = Image.fromarray(image) | |
| timestamp = round(i / fps, 2) | |
| frames.append((pil_image, timestamp)) | |
| vidcap.release() | |
| return frames | |
| # Function to generate text responses based on image input | |
| def generate_image(model_name: str, | |
| text: str, | |
| image: Image.Image, | |
| max_new_tokens: int = 1024, | |
| temperature: float = 0.6, | |
| top_p: float = 0.9, | |
| top_k: int = 50, | |
| repetition_penalty: float = 1.2): | |
| """ | |
| Generates responses using the selected model for image input. | |
| """ | |
| if model_name == "Camel-Doc-OCR-080125(v2)": | |
| processor = processor_m | |
| model = model_m | |
| elif model_name == "ViGaL-7B": | |
| processor = processor_x | |
| model = model_x | |
| elif model_name == "Visionary-R1-3B": | |
| processor = processor_o | |
| model = model_o | |
| elif model_name == "Varco-Vision-2.0-14B": | |
| processor = processor_t | |
| model = model_t | |
| else: | |
| yield "Invalid model selected.", "Invalid model selected." | |
| return | |
| if image is None: | |
| yield "Please upload an image.", "Please upload an image." | |
| return | |
| messages = [{ | |
| "role": "user", | |
| "content": [ | |
| {"type": "image", "image": image}, | |
| {"type": "text", "text": text}, | |
| ] | |
| }] | |
| prompt_full = processor.apply_chat_template(messages, | |
| tokenize=False, | |
| add_generation_prompt=True) | |
| inputs = processor(text=[prompt_full], | |
| images=[image], | |
| return_tensors="pt", | |
| padding=True, | |
| truncation=False, | |
| max_length=MAX_INPUT_TOKEN_LENGTH).to(device) | |
| streamer = TextIteratorStreamer(processor, | |
| skip_prompt=True, | |
| skip_special_tokens=True) | |
| generation_kwargs = { | |
| **inputs, "streamer": streamer, | |
| "max_new_tokens": max_new_tokens | |
| } | |
| thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| buffer = "" | |
| for new_text in streamer: | |
| buffer += new_text | |
| time.sleep(0.01) | |
| yield buffer, buffer | |
| # Function to generate text responses based on video input | |
| def generate_video(model_name: str, | |
| text: str, | |
| video_path: str, | |
| max_new_tokens: int = 1024, | |
| temperature: float = 0.6, | |
| top_p: float = 0.9, | |
| top_k: int = 50, | |
| repetition_penalty: float = 1.2): | |
| """ | |
| Generates responses using the selected model for video input. | |
| """ | |
| if model_name == "Camel-Doc-OCR-080125(v2)": | |
| processor = processor_m | |
| model = model_m | |
| elif model_name == "ViGaL-7B": | |
| processor = processor_x | |
| model = model_x | |
| elif model_name == "Visionary-R1-3B": | |
| processor = processor_o | |
| model = model_o | |
| elif model_name == "Varco-Vision-2.0-14B": | |
| processor = processor_t | |
| model = model_t | |
| else: | |
| yield "Invalid model selected.", "Invalid model selected." | |
| return | |
| if video_path is None: | |
| yield "Please upload a video.", "Please upload a video." | |
| return | |
| frames = downsample_video(video_path) | |
| messages = [{ | |
| "role": "system", | |
| "content": [{"type": "text", "text": "You are a helpful assistant."}] | |
| }, { | |
| "role": "user", | |
| "content": [{"type": "text", "text": text}] | |
| }] | |
| for frame in frames: | |
| image, timestamp = frame | |
| messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"}) | |
| messages[1]["content"].append({"type": "image", "image": image}) | |
| inputs = processor.apply_chat_template( | |
| messages, | |
| tokenize=True, | |
| add_generation_prompt=True, | |
| return_dict=True, | |
| return_tensors="pt", | |
| truncation=False, | |
| max_length=MAX_INPUT_TOKEN_LENGTH).to(device) | |
| streamer = TextIteratorStreamer(processor, | |
| skip_prompt=True, | |
| skip_special_tokens=True) | |
| generation_kwargs = { | |
| **inputs, | |
| "streamer": streamer, | |
| "max_new_tokens": max_new_tokens, | |
| "do_sample": True, | |
| "temperature": temperature, | |
| "top_p": top_p, | |
| "top_k": top_k, | |
| "repetition_penalty": repetition_penalty, | |
| } | |
| thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| buffer = "" | |
| for new_text in streamer: | |
| buffer += new_text | |
| buffer = buffer.replace("<|im_end|>", "") | |
| time.sleep(0.01) | |
| yield buffer, buffer | |
| # Define examples for image and video inference | |
| image_examples = [ | |
| ["Extract the content.", "images/7.png"], | |
| ["Solve the problem to find the value.", "images/1.jpg"], | |
| ["Explain the scene.", "images/6.JPG"], | |
| ["Solve the problem step by step.", "images/2.jpg"], | |
| ["Find the value of 'X'.", "images/3.jpg"], | |
| ["Simplify the expression.", "images/4.jpg"], | |
| ["Solve for the value.", "images/5.png"] | |
| ] | |
| video_examples = [ | |
| ["Explain the video in detail.", "videos/1.mp4"], | |
| ["Explain the video in detail.", "videos/2.mp4"] | |
| ] | |
| #css | |
| css = """ | |
| .submit-btn { | |
| background-color: #2980b9 !important; | |
| color: white !important; | |
| } | |
| .submit-btn:hover { | |
| background-color: #3498db !important; | |
| } | |
| .canvas-output { | |
| border: 2px solid #4682B4; | |
| border-radius: 10px; | |
| padding: 20px; | |
| } | |
| """ | |
| # Create the Gradio Interface | |
| with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo: | |
| gr.Markdown( | |
| "# **[Multimodal VLM OCR3](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**" | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Tabs(): | |
| with gr.TabItem("Image Inference"): | |
| image_query = gr.Textbox( | |
| label="Query Input", | |
| placeholder="Enter your query here...") | |
| image_upload = gr.Image(type="pil", label="Image") | |
| image_submit = gr.Button("Submit", | |
| elem_classes="submit-btn") | |
| gr.Examples(examples=image_examples, | |
| inputs=[image_query, image_upload]) | |
| with gr.TabItem("Video Inference"): | |
| video_query = gr.Textbox( | |
| label="Query Input", | |
| placeholder="Enter your query here...") | |
| video_upload = gr.Video(label="Video") | |
| video_submit = gr.Button("Submit", | |
| elem_classes="submit-btn") | |
| gr.Examples(examples=video_examples, | |
| inputs=[video_query, video_upload]) | |
| with gr.Accordion("Advanced options", open=False): | |
| max_new_tokens = gr.Slider(label="Max new tokens", | |
| minimum=1, | |
| maximum=MAX_MAX_NEW_TOKENS, | |
| step=1, | |
| value=DEFAULT_MAX_NEW_TOKENS) | |
| temperature = gr.Slider(label="Temperature", | |
| minimum=0.1, | |
| maximum=4.0, | |
| step=0.1, | |
| value=0.6) | |
| top_p = gr.Slider(label="Top-p (nucleus sampling)", | |
| minimum=0.05, | |
| maximum=1.0, | |
| step=0.05, | |
| value=0.9) | |
| top_k = gr.Slider(label="Top-k", | |
| minimum=1, | |
| maximum=1000, | |
| step=1, | |
| value=50) | |
| repetition_penalty = gr.Slider(label="Repetition penalty", | |
| minimum=1.0, | |
| maximum=2.0, | |
| step=0.05, | |
| value=1.2) | |
| with gr.Column(): | |
| with gr.Column(elem_classes="canvas-output"): | |
| gr.Markdown("## Output") | |
| output = gr.Textbox(label="Raw Output Stream", | |
| interactive=False, | |
| lines=2, show_copy_button=True) | |
| with gr.Accordion("(Result.md)", open=False): | |
| markdown_output = gr.Markdown( | |
| label="markup.md") | |
| #download_btn = gr.Button("Download Result.md") | |
| model_choice = gr.Radio(choices=[ | |
| "Camel-Doc-OCR-080125(v2)", "Varco-Vision-2.0-14B", | |
| "ViGaL-7B", "Visionary-R1-3B" | |
| ], | |
| label="Select Model", | |
| value="Camel-Doc-OCR-080125(v2)") | |
| gr.Markdown("**Model Info 💻** | [Report Bug](https://huggingface.co/spaces/prithivMLmods/Multimodal-VLMs-5x/discussions)") | |
| gr.Markdown("> [Camel-Doc-OCR-080125(v2)](https://huggingface.co/prithivMLmods/WR30a-Deep-7B-0711): the camel-doc-ocr-080125 model is a fine-tuned version of qwen2.5-vl-7b-instruct, optimized for document retrieval, content extraction, and analysis recognition. built on top of the qwen2.5-vl architecture, this model enhances document comprehension capabilities.") | |
| gr.Markdown("> [MonkeyOCR-pro-1.2B](https://huggingface.co/echo840/MonkeyOCR-pro-1.2B): MonkeyOCR adopts a structure-recognition-relation (SRR) triplet paradigm, which simplifies the multi-tool pipeline of modular approaches while avoiding the inefficiency of using large multimodal models for full-page document processing.") | |
| gr.Markdown("> [Vision Matters 7B](https://huggingface.co/Yuting6/Vision-Matters-7B): vision-matters is a simple visual perturbation framework that can be easily integrated into existing post-training pipelines including sft, dpo, and grpo. our findings highlight the critical role of visual perturbation: better reasoning begins with better seeing.") | |
| gr.Markdown("> [ViGaL 7B](https://huggingface.co/yunfeixie/ViGaL-7B): vigal-7b shows that training a 7b mllm on simple games like snake using reinforcement learning boosts performance on benchmarks like mathvista and mmmu without needing worked solutions or diagrams indicating transferable reasoning skills.") | |
| gr.Markdown("> [Visionary-R1](https://huggingface.co/maifoundations/Visionary-R1): visionary-r1 is a novel framework for training visual language models (vlms) to perform robust visual reasoning using reinforcement learning (rl). unlike traditional approaches that rely heavily on (sft) or (cot) annotations, visionary-r1 leverages only visual question-answer pairs and rl, making the process more scalable and accessible.") | |
| gr.Markdown(">⚠️note: all the models in space are not guaranteed to perform well in video inference use cases.") | |
| # Define the submit button actions | |
| image_submit.click(fn=generate_image, | |
| inputs=[ | |
| model_choice, image_query, image_upload, | |
| max_new_tokens, temperature, top_p, top_k, | |
| repetition_penalty | |
| ], | |
| outputs=[output, markdown_output]) | |
| video_submit.click(fn=generate_video, | |
| inputs=[ | |
| model_choice, video_query, video_upload, | |
| max_new_tokens, temperature, top_p, top_k, | |
| repetition_penalty | |
| ], | |
| outputs=[output, markdown_output]) | |
| if __name__ == "__main__": | |
| demo.queue(max_size=30).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True) |