prithivMLmods commited on
Commit
60e91e0
·
verified ·
1 Parent(s): 24afe8c
Files changed (2) hide show
  1. app.py +282 -0
  2. requirements.txt +17 -0
app.py ADDED
@@ -0,0 +1,282 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import spaces
2
+ import json
3
+ import math
4
+ import os
5
+ import traceback
6
+ from io import BytesIO
7
+ from typing import Any, Dict, List, Optional, Tuple
8
+ import re
9
+ import time
10
+ from threading import Thread
11
+
12
+ import gradio as gr
13
+ import requests
14
+ import torch
15
+ from PIL import Image
16
+
17
+ from transformers import (
18
+ Qwen2VLForConditionalGeneration,
19
+ Qwen2_5_VLForConditionalGeneration,
20
+ AutoModelForImageTextToText,
21
+ AutoProcessor,
22
+ TextIteratorStreamer,
23
+ AutoModel,
24
+ AutoTokenizer,
25
+ )
26
+
27
+ # --- Activate Forced Dark Mode ---
28
+ js_func = """
29
+ function refresh() {
30
+ const url = new URL(window.location);
31
+ if (url.searchParams.get('__theme') !== 'dark') {
32
+ url.searchParams.set('__theme', 'dark');
33
+ window.location.href = url.href;
34
+ }
35
+ }
36
+ """
37
+
38
+ # --- Constants and Model Setup ---
39
+ MAX_INPUT_TOKEN_LENGTH = 4096
40
+ device = "cuda" if torch.cuda.is_available() else "cpu"
41
+
42
+ # --- Prompts for Different Tasks ---
43
+ layout_prompt = """Please output the layout information from the image, including each layout element's bbox, its category, and the corresponding text content within the bbox.
44
+
45
+ 1. Bbox format: [x1, y1, x2, y2]
46
+ 2. Layout Categories: The possible categories are ['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title'].
47
+ 3. Text Extraction & Formatting Rules:
48
+ - For tables, provide the content in a structured JSON format.
49
+ - For all other elements, provide the plain text.
50
+ 4. Constraints:
51
+ - The output must be the original text from the image.
52
+ - All layout elements must be sorted according to human reading order.
53
+ 5. Final Output: The entire output must be a single JSON object wrapped in ```json ... ```.
54
+ """
55
+
56
+ ocr_prompt = "Perform precise OCR on the image. Extract all text content, maintaining the original structure, paragraphs, and tables as formatted markdown."
57
+
58
+ # --- Model Loading ---
59
+ MODEL_ID_M = "prithivMLmods/Camel-Doc-OCR-080125"
60
+ processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
61
+ model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
62
+ MODEL_ID_M, trust_remote_code=True, torch_dtype=torch.float16
63
+ ).to(device).eval()
64
+
65
+ MODEL_ID_T = "prithivMLmods/Megalodon-OCR-Sync-0713"
66
+ processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True)
67
+ model_t = Qwen2_5_VLForConditionalGeneration.from_pretrained(
68
+ MODEL_ID_T, trust_remote_code=True, torch_dtype=torch.float16
69
+ ).to(device).eval()
70
+
71
+ MODEL_ID_C = "nanonets/Nanonets-OCR-s"
72
+ processor_c = AutoProcessor.from_pretrained(MODEL_ID_C, trust_remote_code=True)
73
+ model_c = Qwen2_5_VLForConditionalGeneration.from_pretrained(
74
+ MODEL_ID_C, trust_remote_code=True, torch_dtype=torch.float16
75
+ ).to(device).eval()
76
+
77
+ MODEL_ID_G = "echo840/MonkeyOCR"
78
+ SUBFOLDER = "Recognition"
79
+ processor_g = AutoProcessor.from_pretrained(
80
+ MODEL_ID_G, trust_remote_code=True, subfolder=SUBFOLDER
81
+ )
82
+ model_g = Qwen2_5_VLForConditionalGeneration.from_pretrained(
83
+ MODEL_ID_G, trust_remote_code=True, subfolder=SUBFOLDER, torch_dtype=torch.float16
84
+ ).to(device).eval()
85
+
86
+ MODEL_ID_I = "allenai/olmOCR-7B-0725"
87
+ processor_i = AutoProcessor.from_pretrained(MODEL_ID_I, trust_remote_code=True)
88
+ model_i = Qwen2_5_VLForConditionalGeneration.from_pretrained(
89
+ MODEL_ID_I, trust_remote_code=True, torch_dtype=torch.float16
90
+ ).to(device).eval()
91
+
92
+ # Load typhoon-ocr-3b
93
+ MODEL_ID_J = "scb10x/typhoon-ocr-3b"
94
+ processor_j = AutoProcessor.from_pretrained(
95
+ MODEL_ID_J,
96
+ trust_remote_code=True
97
+ )
98
+ model_j = Qwen2_5_VLForConditionalGeneration.from_pretrained(
99
+ MODEL_ID_J,
100
+ trust_remote_code=True,
101
+ torch_dtype=torch.float16
102
+ ).to(device).eval()
103
+
104
+ # --- Utility Functions ---
105
+ def layoutjson2md(layout_data: List[Dict]) -> str:
106
+ """Converts the structured JSON from Layout Analysis into formatted Markdown."""
107
+ markdown_lines = []
108
+ try:
109
+ # Sort items by reading order (top-to-bottom, left-to-right)
110
+ sorted_items = sorted(layout_data, key=lambda x: (x.get('bbox', [0,0,0,0])[1], x.get('bbox', [0,0,0,0])[0]))
111
+ for item in sorted_items:
112
+ category = item.get('category', '')
113
+ text = item.get('text', '')
114
+ if not text: continue
115
+
116
+ if category == 'Title': markdown_lines.append(f"# {text}\n")
117
+ elif category == 'Section-header': markdown_lines.append(f"## {text}\n")
118
+ elif category == 'Table':
119
+ # Handle structured table JSON
120
+ if isinstance(text, dict) and 'header' in text and 'rows' in text:
121
+ header = '| ' + ' | '.join(map(str, text['header'])) + ' |'
122
+ separator = '| ' + ' | '.join(['---'] * len(text['header'])) + ' |'
123
+ rows = ['| ' + ' | '.join(map(str, row)) + ' |' for row in text['rows']]
124
+ markdown_lines.extend([header, separator] + rows)
125
+ markdown_lines.append("\n")
126
+ else: # Fallback for simple text
127
+ markdown_lines.append(f"{text}\n")
128
+ else:
129
+ markdown_lines.append(f"{text}\n")
130
+ except Exception as e:
131
+ print(f"Error converting to markdown: {e}")
132
+ return "### Error converting JSON to Markdown."
133
+ return "\n".join(markdown_lines)
134
+
135
+ # --- Core Application Logic ---
136
+ @spaces.GPU
137
+ def process_document_stream(model_name: str, task_choice: str, image: Image.Image, max_new_tokens: int):
138
+ """
139
+ Main generator function that handles both OCR and Layout Analysis tasks.
140
+ """
141
+ if image is None:
142
+ yield "Please upload an image.", "Please upload an image.", None
143
+ return
144
+
145
+ # 1. Select prompt based on user's task choice
146
+ text_prompt = ocr_prompt if task_choice == "Content Extraction" else layout_prompt
147
+
148
+ # 2. Select model and processor
149
+ if model_name == "Camel-Doc-OCR-080125": processor, model = processor_m, model_m
150
+ elif model_name == "Megalodon-OCR-Sync-0713": processor, model = processor_t, model_t
151
+ elif model_name == "Nanonets-OCR-s": processor, model = processor_c, model_c
152
+ elif model_name == "MonkeyOCR-Recognition": processor, model = processor_g, model_g
153
+ elif model_name == "olmOCR-7B-0725": processor, model = processor_i, model_i
154
+ elif model_name == "typhoon-ocr-3b": processor, model = processor_j, model_j
155
+ else:
156
+ yield "Invalid model selected.", "Invalid model selected.", None
157
+ return
158
+
159
+ # 3. Prepare model inputs and streamer
160
+ messages = [{"role": "user", "content": [{"type": "image", "image": image}, {"type": "text", "text": text_prompt}]}]
161
+ prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
162
+ inputs = processor(text=[prompt_full], images=[image], return_tensors="pt", padding=True, truncation=True, max_length=MAX_INPUT_TOKEN_LENGTH).to(device)
163
+ streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
164
+ generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
165
+
166
+ thread = Thread(target=model.generate, kwargs=generation_kwargs)
167
+ thread.start()
168
+
169
+ # 4. Stream raw output to the UI in real-time
170
+ buffer = ""
171
+ for new_text in streamer:
172
+ buffer += new_text
173
+ buffer = buffer.replace("<|im_end|>", "")
174
+ time.sleep(0.01)
175
+ yield buffer, "⏳ Processing...", {"status": "streaming"}
176
+
177
+ # 5. Post-process the final buffer based on the selected task
178
+ if task_choice == "Content Extraction":
179
+ # For OCR, the buffer is the final result.
180
+ yield buffer, buffer, None
181
+ else: # Layout Analysis
182
+ try:
183
+ json_match = re.search(r'```json\s*([\s\S]+?)\s*```', buffer)
184
+ if not json_match:
185
+ raise json.JSONDecodeError("JSON object not found in output.", buffer, 0)
186
+
187
+ json_str = json_match.group(1)
188
+ layout_data = json.loads(json_str)
189
+ markdown_content = layoutjson2md(layout_data)
190
+
191
+ yield buffer, markdown_content, layout_data
192
+ except Exception as e:
193
+ error_md = f"❌ **Error:** Failed to parse Layout JSON.\n\n**Details:**\n`{str(e)}`"
194
+ error_json = {"error": "ProcessingError", "details": str(e), "raw_output": buffer}
195
+ yield buffer, error_md, error_json
196
+
197
+ # --- Gradio UI Definition ---
198
+ def create_gradio_interface():
199
+ """Builds and returns the Gradio web interface."""
200
+ css = """
201
+ .main-container { max-width: 1400px; margin: 0 auto; }
202
+ .process-button { border: none !important; color: white !important; font-weight: bold !important; background-color: blue !important;}
203
+ .process-button:hover { background-color: darkblue !important; transform: translateY(-2px) !important; box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important; }
204
+ """
205
+ with gr.Blocks(theme="bethecloud/storj_theme", css=css, js=js_func) as demo:
206
+ gr.HTML("""
207
+ <div class="title" style="text-align: center">
208
+ <h1>OCR Comparator👨‍🏫</h1>
209
+ <p style="font-size: 1.1em; color: #6b7280; margin-bottom: 0.6em;">
210
+ Advanced Vision-Language Model for Image Content and Layout Extraction
211
+ </p>
212
+ </div>
213
+ """)
214
+
215
+ with gr.Row():
216
+ # Left Column (Inputs)
217
+ with gr.Column(scale=1):
218
+ model_choice = gr.Dropdown(
219
+ choices=["Camel-Doc-OCR-080125",
220
+ "MonkeyOCR-Recognition",
221
+ "olmOCR-7B-0725",
222
+ "Nanonets-OCR-s",
223
+ "Megalodon-OCR-Sync-0713",
224
+ "typhoon-ocr-3b"
225
+ ],
226
+ label="Select Model", value="Nanonets-OCR-s"
227
+ )
228
+ task_choice = gr.Dropdown(
229
+ choices=["Content Extraction", "Layout Analysis(.json)"],
230
+ label="Select Task", value="Content Extraction"
231
+ )
232
+ image_input = gr.Image(label="Upload Image", type="pil", sources=['upload'])
233
+ with gr.Accordion("Advanced Settings", open=False):
234
+ max_new_tokens = gr.Slider(minimum=512, maximum=8192, value=4096, step=256, label="Max New Tokens")
235
+
236
+ process_btn = gr.Button("🚀 Process Document", variant="primary", elem_classes=["process-button"], size="lg")
237
+ clear_btn = gr.Button("🗑️ Clear All", variant="secondary")
238
+
239
+ # Right Column (Outputs)
240
+ with gr.Column(scale=2):
241
+ with gr.Tabs() as tabs:
242
+ with gr.Tab("📝 Extracted Content"):
243
+ raw_output_stream = gr.Textbox(label="Raw Model Output Stream", interactive=False, lines=13, show_copy_button=True)
244
+ with gr.Row():
245
+ examples = gr.Examples(
246
+ examples=["examples/1.png", "examples/2.png", "examples/3.png", "examples/4.png", "examples/5.png"],
247
+ inputs=image_input,
248
+ label="Examples"
249
+ )
250
+ with gr.Tab("📰 README.md"):
251
+ with gr.Accordion("(Formatted Result)", open=True):
252
+ markdown_output = gr.Markdown(label="Formatted Markdown")
253
+
254
+ with gr.Tab("📋 Layout Analysis Results"):
255
+ json_output = gr.JSON(label="Structured Layout Data (JSON)")
256
+
257
+ # Event Handlers
258
+ def clear_all_outputs():
259
+ return None, "Raw output will appear here.", "Formatted results will appear here.", None
260
+
261
+ process_btn.click(
262
+ fn=process_document_stream,
263
+ inputs=[model_choice,
264
+ task_choice,
265
+ image_input,
266
+ max_new_tokens],
267
+ outputs=[raw_output_stream,
268
+ markdown_output,
269
+ json_output]
270
+ )
271
+ clear_btn.click(
272
+ clear_all_outputs,
273
+ outputs=[image_input,
274
+ raw_output_stream,
275
+ markdown_output,
276
+ json_output]
277
+ )
278
+ return demo
279
+
280
+ if __name__ == "__main__":
281
+ demo = create_gradio_interface()
282
+ demo.queue().launch(share=True, mcp_server=True, ssr_mode=False, show_error=True)
requirements.txt ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ git+https://github.com/huggingface/transformers.git
2
+ git+https://github.com/huggingface/accelerate.git
3
+ git+https://github.com/huggingface/peft.git
4
+ transformers-stream-generator
5
+ huggingface_hub
6
+ opencv-python
7
+ sentencepiece
8
+ qwen-vl-utils
9
+ safetensors
10
+ torchvision
11
+ requests
12
+ spaces
13
+ gradio
14
+ pillow
15
+ gradio
16
+ torch
17
+ av