Spaces:
Running
on
Zero
Running
on
Zero
Delete model.py
Browse files
model.py
DELETED
@@ -1,107 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from transformers import AutoModelForCausalLM, AutoProcessor, VisionEncoderDecoderModel
|
3 |
-
from huggingface_hub import snapshot_download
|
4 |
-
from qwen_vl_utils import process_vision_info
|
5 |
-
|
6 |
-
def load_model(model_name):
|
7 |
-
"""
|
8 |
-
Load the specified model and its processor based on the model name.
|
9 |
-
|
10 |
-
Args:
|
11 |
-
model_name (str): Name of the model ("dots.ocr" or "Dolphin").
|
12 |
-
|
13 |
-
Returns:
|
14 |
-
tuple: (model, processor) for the specified model.
|
15 |
-
"""
|
16 |
-
if model_name == "dots.ocr":
|
17 |
-
model_id = "rednote-hilab/dots.ocr"
|
18 |
-
model_path = "./models/dots-ocr-local"
|
19 |
-
snapshot_download(
|
20 |
-
repo_id=model_id,
|
21 |
-
local_dir=model_path,
|
22 |
-
local_dir_use_symlinks=False,
|
23 |
-
)
|
24 |
-
model = AutoModelForCausalLM.from_pretrained(
|
25 |
-
model_path,
|
26 |
-
attn_implementation="flash_attention_2",
|
27 |
-
torch_dtype=torch.bfloat16,
|
28 |
-
device_map="auto",
|
29 |
-
trust_remote_code=True
|
30 |
-
)
|
31 |
-
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
|
32 |
-
elif model_name == "Dolphin":
|
33 |
-
model_id = "ByteDance/Dolphin"
|
34 |
-
processor = AutoProcessor.from_pretrained(model_id)
|
35 |
-
model = VisionEncoderDecoderModel.from_pretrained(model_id)
|
36 |
-
model.eval()
|
37 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
38 |
-
model.to(device)
|
39 |
-
model = model.half() # Use half precision
|
40 |
-
else:
|
41 |
-
raise ValueError(f"Unknown model: {model_name}")
|
42 |
-
return model, processor
|
43 |
-
|
44 |
-
def inference_dots_ocr(model, processor, image, prompt, max_new_tokens):
|
45 |
-
"""
|
46 |
-
Perform inference using the dots.ocr model.
|
47 |
-
|
48 |
-
Args:
|
49 |
-
model: The loaded dots.ocr model.
|
50 |
-
processor: The corresponding processor.
|
51 |
-
image (PIL.Image): Input image.
|
52 |
-
prompt (str): Prompt for inference.
|
53 |
-
max_new_tokens (int): Maximum number of tokens to generate.
|
54 |
-
|
55 |
-
Returns:
|
56 |
-
str: Generated text output.
|
57 |
-
"""
|
58 |
-
messages = [
|
59 |
-
{
|
60 |
-
"role": "user",
|
61 |
-
"content": [
|
62 |
-
{"type": "image", "image": image},
|
63 |
-
{"type": "text", "text": prompt}
|
64 |
-
]
|
65 |
-
}
|
66 |
-
]
|
67 |
-
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
68 |
-
image_inputs, video_inputs = process_vision_info(messages)
|
69 |
-
inputs = processor(
|
70 |
-
text=[text],
|
71 |
-
images=image_inputs,
|
72 |
-
videos=video_inputs,
|
73 |
-
padding=True,
|
74 |
-
return_tensors="pt",
|
75 |
-
)
|
76 |
-
inputs = inputs.to(model.device)
|
77 |
-
with torch.no_grad():
|
78 |
-
generated_ids = model.generate(
|
79 |
-
**inputs,
|
80 |
-
max_new_tokens=max_new_tokens,
|
81 |
-
do_sample=False,
|
82 |
-
temperature=0.1
|
83 |
-
)
|
84 |
-
generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
|
85 |
-
output_text = processor.batch_decode(
|
86 |
-
generated_ids_trimmed,
|
87 |
-
skip_special_tokens=True,
|
88 |
-
clean_up_tokenization_spaces=False
|
89 |
-
)
|
90 |
-
return output_text[0] if output_text else ""
|
91 |
-
|
92 |
-
def inference_dolphin(model, processor, image):
|
93 |
-
"""
|
94 |
-
Perform inference using the Dolphin model.
|
95 |
-
|
96 |
-
Args:
|
97 |
-
model: The loaded Dolphin model.
|
98 |
-
processor: The corresponding processor.
|
99 |
-
image (PIL.Image): Input image.
|
100 |
-
|
101 |
-
Returns:
|
102 |
-
str: Generated text output.
|
103 |
-
"""
|
104 |
-
pixel_values = processor(image, return_tensors="pt").pixel_values.to(model.device).half()
|
105 |
-
generated_ids = model.generate(pixel_values)
|
106 |
-
generated_text = processor.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
107 |
-
return generated_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|