prithivMLmods commited on
Commit
d88282d
·
verified ·
1 Parent(s): b64502b

Delete model.py

Browse files
Files changed (1) hide show
  1. model.py +0 -107
model.py DELETED
@@ -1,107 +0,0 @@
1
- import torch
2
- from transformers import AutoModelForCausalLM, AutoProcessor, VisionEncoderDecoderModel
3
- from huggingface_hub import snapshot_download
4
- from qwen_vl_utils import process_vision_info
5
-
6
- def load_model(model_name):
7
- """
8
- Load the specified model and its processor based on the model name.
9
-
10
- Args:
11
- model_name (str): Name of the model ("dots.ocr" or "Dolphin").
12
-
13
- Returns:
14
- tuple: (model, processor) for the specified model.
15
- """
16
- if model_name == "dots.ocr":
17
- model_id = "rednote-hilab/dots.ocr"
18
- model_path = "./models/dots-ocr-local"
19
- snapshot_download(
20
- repo_id=model_id,
21
- local_dir=model_path,
22
- local_dir_use_symlinks=False,
23
- )
24
- model = AutoModelForCausalLM.from_pretrained(
25
- model_path,
26
- attn_implementation="flash_attention_2",
27
- torch_dtype=torch.bfloat16,
28
- device_map="auto",
29
- trust_remote_code=True
30
- )
31
- processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
32
- elif model_name == "Dolphin":
33
- model_id = "ByteDance/Dolphin"
34
- processor = AutoProcessor.from_pretrained(model_id)
35
- model = VisionEncoderDecoderModel.from_pretrained(model_id)
36
- model.eval()
37
- device = "cuda" if torch.cuda.is_available() else "cpu"
38
- model.to(device)
39
- model = model.half() # Use half precision
40
- else:
41
- raise ValueError(f"Unknown model: {model_name}")
42
- return model, processor
43
-
44
- def inference_dots_ocr(model, processor, image, prompt, max_new_tokens):
45
- """
46
- Perform inference using the dots.ocr model.
47
-
48
- Args:
49
- model: The loaded dots.ocr model.
50
- processor: The corresponding processor.
51
- image (PIL.Image): Input image.
52
- prompt (str): Prompt for inference.
53
- max_new_tokens (int): Maximum number of tokens to generate.
54
-
55
- Returns:
56
- str: Generated text output.
57
- """
58
- messages = [
59
- {
60
- "role": "user",
61
- "content": [
62
- {"type": "image", "image": image},
63
- {"type": "text", "text": prompt}
64
- ]
65
- }
66
- ]
67
- text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
68
- image_inputs, video_inputs = process_vision_info(messages)
69
- inputs = processor(
70
- text=[text],
71
- images=image_inputs,
72
- videos=video_inputs,
73
- padding=True,
74
- return_tensors="pt",
75
- )
76
- inputs = inputs.to(model.device)
77
- with torch.no_grad():
78
- generated_ids = model.generate(
79
- **inputs,
80
- max_new_tokens=max_new_tokens,
81
- do_sample=False,
82
- temperature=0.1
83
- )
84
- generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
85
- output_text = processor.batch_decode(
86
- generated_ids_trimmed,
87
- skip_special_tokens=True,
88
- clean_up_tokenization_spaces=False
89
- )
90
- return output_text[0] if output_text else ""
91
-
92
- def inference_dolphin(model, processor, image):
93
- """
94
- Perform inference using the Dolphin model.
95
-
96
- Args:
97
- model: The loaded Dolphin model.
98
- processor: The corresponding processor.
99
- image (PIL.Image): Input image.
100
-
101
- Returns:
102
- str: Generated text output.
103
- """
104
- pixel_values = processor(image, return_tensors="pt").pixel_values.to(model.device).half()
105
- generated_ids = model.generate(pixel_values)
106
- generated_text = processor.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
107
- return generated_text