Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import time | |
| import threading | |
| import gradio as gr | |
| import spaces | |
| import torch | |
| import numpy as np | |
| from PIL import Image | |
| import cv2 | |
| from transformers import ( | |
| Qwen2_5_VLForConditionalGeneration, | |
| Qwen2VLForConditionalGeneration, | |
| #Glm4vForConditionalGeneration, | |
| AutoProcessor, | |
| TextIteratorStreamer, | |
| ) | |
| from qwen_vl_utils import process_vision_info | |
| # Constants for text generation | |
| MAX_MAX_NEW_TOKENS = 16384 | |
| DEFAULT_MAX_NEW_TOKENS = 8192 | |
| MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
| device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
| # Load Camel-Doc-OCR-062825 | |
| MODEL_ID_M = "prithivMLmods/Camel-Doc-OCR-062825" | |
| processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True) | |
| model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID_M, | |
| trust_remote_code=True, | |
| torch_dtype=torch.float16 | |
| ).to(device).eval() | |
| # MinerU2.5-2509 | |
| MODEL_ID_T = "opendatalab/MinerU2.5-2509-1.2B" | |
| processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True) | |
| model_t = Qwen2VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID_T, | |
| trust_remote_code=True, | |
| torch_dtype=torch.float16 | |
| ).to(device).eval() | |
| # Load Video-MTR | |
| MODEL_ID_S = "Phoebe13/Video-MTR" | |
| processor_s = AutoProcessor.from_pretrained(MODEL_ID_S, trust_remote_code=True) | |
| model_s = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID_S, | |
| trust_remote_code=True, | |
| torch_dtype=torch.float16 | |
| ).to(device).eval() | |
| # Load ViLaSR | |
| MODEL_ID_Y = "inclusionAI/ViLaSR" | |
| processor_y = AutoProcessor.from_pretrained(MODEL_ID_Y, trust_remote_code=True) | |
| model_y = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID_Y, | |
| trust_remote_code=True, | |
| torch_dtype=torch.float16 | |
| ).to(device).eval() | |
| def downsample_video(video_path): | |
| """ | |
| Downsample a video to evenly spaced frames, returning each as a PIL image with its timestamp. | |
| """ | |
| vidcap = cv2.VideoCapture(video_path) | |
| total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
| fps = vidcap.get(cv2.CAP_PROP_FPS) | |
| frames = [] | |
| frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int) | |
| for i in frame_indices: | |
| vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) | |
| success, image = vidcap.read() | |
| if success: | |
| image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
| pil_image = Image.fromarray(image) | |
| timestamp = round(i / fps, 2) | |
| frames.append((pil_image, timestamp)) | |
| vidcap.release() | |
| return frames | |
| def generate_image(model_name: str, text: str, image: Image.Image, | |
| max_new_tokens: int = 1024, | |
| temperature: float = 0.6, | |
| top_p: float = 0.9, | |
| top_k: int = 50, | |
| repetition_penalty: float = 1.2): | |
| """ | |
| Generate responses using the selected model for image input. | |
| """ | |
| if model_name == "Camel-Doc-OCR-062825": | |
| processor = processor_m | |
| model = model_m | |
| elif model_name == "MinerU2.5-2509": | |
| processor = processor_t | |
| model = model_t | |
| elif model_name == "Video-MTR": | |
| processor = processor_s | |
| model = model_s | |
| elif model_name == "ViLaSR-7B": | |
| processor = processor_y | |
| model = model_y | |
| else: | |
| yield "Invalid model selected.", "Invalid model selected." | |
| return | |
| if image is None: | |
| yield "Please upload an image.", "Please upload an image." | |
| return | |
| messages = [{ | |
| "role": "user", | |
| "content": [ | |
| {"type": "image", "image": image}, | |
| {"type": "text", "text": text}, | |
| ] | |
| }] | |
| prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| inputs = processor( | |
| text=[prompt_full], | |
| images=[image], | |
| return_tensors="pt", | |
| padding=True, | |
| truncation=False, | |
| max_length=MAX_INPUT_TOKEN_LENGTH | |
| ).to(device) | |
| streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens} | |
| thread = threading.Thread(target=model.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| buffer = "" | |
| for new_text in streamer: | |
| buffer += new_text | |
| time.sleep(0.01) | |
| yield buffer, buffer | |
| def generate_video(model_name: str, text: str, video_path: str, | |
| max_new_tokens: int = 1024, | |
| temperature: float = 0.6, | |
| top_p: float = 0.9, | |
| top_k: int = 50, | |
| repetition_penalty: float = 1.2): | |
| """ | |
| Generate responses using the selected model for video input. | |
| """ | |
| if model_name == "Camel-Doc-OCR-062825": | |
| processor = processor_m | |
| model = model_m | |
| elif model_name == "MinerU2.5-2509": | |
| processor = processor_t | |
| model = model_t | |
| elif model_name == "Video-MTR": | |
| processor = processor_s | |
| model = model_s | |
| elif model_name == "ViLaSR-7B": | |
| processor = processor_y | |
| model = model_y | |
| else: | |
| yield "Invalid model selected.", "Invalid model selected." | |
| return | |
| if video_path is None: | |
| yield "Please upload a video.", "Please upload a video." | |
| return | |
| frames = downsample_video(video_path) | |
| messages = [ | |
| {"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]}, | |
| {"role": "user", "content": [{"type": "text", "text": text}]} | |
| ] | |
| for frame in frames: | |
| image, timestamp = frame | |
| messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"}) | |
| messages[1]["content"].append({"type": "image", "image": image}) | |
| inputs = processor.apply_chat_template( | |
| messages, | |
| tokenize=True, | |
| add_generation_prompt=True, | |
| return_dict=True, | |
| return_tensors="pt", | |
| truncation=False, | |
| max_length=MAX_INPUT_TOKEN_LENGTH | |
| ).to(device) | |
| streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = { | |
| **inputs, | |
| "streamer": streamer, | |
| "max_new_tokens": max_new_tokens, | |
| "do_sample": True, | |
| "temperature": temperature, | |
| "top_p": top_p, | |
| "top_k": top_k, | |
| "repetition_penalty": repetition_penalty, | |
| } | |
| thread = threading.Thread(target=model.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| buffer = "" | |
| for new_text in streamer: | |
| buffer += new_text | |
| buffer = buffer.replace("<|im_end|>", "") | |
| time.sleep(0.01) | |
| yield buffer, buffer | |
| # Define examples for image and video inference | |
| image_examples = [ | |
| ["convert this page to doc [text] precisely for markdown.", "images/1.png"], | |
| ["explain the movie shot in detail.", "images/5.jpg"], | |
| ["convert this page to doc [table] precisely for markdown.", "images/2.png"], | |
| ["explain the movie shot in detail.", "images/3.png"], | |
| ["fill the correct numbers.", "images/4.png"] | |
| ] | |
| video_examples = [ | |
| ["explain the video in detail.", "videos/b.mp4"], | |
| ["explain the ad video in detail.", "videos/a.mp4"] | |
| ] | |
| # Updated CSS with model choice highlighting | |
| css = """ | |
| .submit-btn { | |
| background-color: #2980b9 !important; | |
| color: white !important; | |
| } | |
| .submit-btn:hover { | |
| background-color: #3498db !important; | |
| } | |
| .canvas-output { | |
| border: 2px solid #4682B4; | |
| border-radius: 10px; | |
| padding: 20px; | |
| } | |
| """ | |
| # Create the Gradio Interface | |
| with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo: | |
| gr.Markdown("# **[Multimodal VLM v1.0](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**") | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Tabs(): | |
| with gr.TabItem("Image Inference"): | |
| image_query = gr.Textbox(label="Query Input", placeholder="✦︎ Enter your query here...") | |
| image_upload = gr.Image(type="pil", label="Image", height=290) | |
| image_submit = gr.Button("Submit", elem_classes="submit-btn") | |
| gr.Examples( | |
| examples=image_examples, | |
| inputs=[image_query, image_upload] | |
| ) | |
| with gr.TabItem("Video Inference"): | |
| video_query = gr.Textbox(label="Query Input", placeholder="✦︎ Enter your query here...") | |
| video_upload = gr.Video(label="Video", height=290) | |
| video_submit = gr.Button("Submit", elem_classes="submit-btn") | |
| gr.Examples( | |
| examples=video_examples, | |
| inputs=[video_query, video_upload] | |
| ) | |
| with gr.Accordion("Advanced options", open=False): | |
| max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS) | |
| temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6) | |
| top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9) | |
| top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50) | |
| repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2) | |
| with gr.Column(): | |
| with gr.Column(elem_classes="canvas-output"): | |
| gr.Markdown("## Output") | |
| output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=5) | |
| with gr.Accordion("(Result.md)", open=False): | |
| markdown_output = gr.Markdown(label="(Result.md)") | |
| model_choice = gr.Radio( | |
| choices=["Camel-Doc-OCR-062825", "MinerU2.5-2509", "Video-MTR", "ViLaSR-7B"], | |
| label="Select Model", | |
| value="Camel-Doc-OCR-062825" | |
| ) | |
| gr.Markdown("**Model Info 💻** | [Report Bug](https://huggingface.co/spaces/prithivMLmods/Multimodal-VLM-v1.0/discussions)") | |
| gr.Markdown("> [Camel-Doc-OCR-062825](https://huggingface.co/prithivMLmods/Camel-Doc-OCR-062825) is a Qwen2.5-VL-7B-Instruct finetune, highly optimized for document retrieval, structured extraction, analysis, and direct Markdown generation from images and PDFs.") | |
| gr.Markdown("> [MinerU2.5-2509](https://huggingface.co/opendatalab/MinerU2.5-2509-1.2B) is a 1.2B-parameter vision-language model for document parsing that achieves state-of-the-art accuracy with high computational efficiency by adopting a two-stage parsing strategy.") | |
| gr.Markdown("> [ViLaSR-7B](https://huggingface.co/inclusionAI/ViLaSR) focuses on reinforcing spatial reasoning in visual-language tasks by combining interwoven thinking with visual drawing, making it especially suited for spatial reasoning and complex tip-based queries.") | |
| gr.Markdown("> [Video-MTR](https://huggingface.co/Phoebe13/Video-MTR) introduces reinforced multi-turn reasoning for long-form video understanding, enabling iterative key segment selection and deeper question comprehension.") | |
| gr.Markdown("> ✋ ViLaSR-7B - demo only supports text-only reasoning, which doesn't reflect the full behavior of the model and may underrepresent its capabilities.") | |
| gr.Markdown("> ⚠️ Note: Models in this space may not perform well on video inference tasks.") | |
| # Define the submit button actions | |
| image_submit.click(fn=generate_image, | |
| inputs=[ | |
| model_choice, image_query, image_upload, | |
| max_new_tokens, temperature, top_p, top_k, | |
| repetition_penalty | |
| ], | |
| outputs=[output, markdown_output]) | |
| video_submit.click(fn=generate_video, | |
| inputs=[ | |
| model_choice, video_query, video_upload, | |
| max_new_tokens, temperature, top_p, top_k, | |
| repetition_penalty | |
| ], | |
| outputs=[output, markdown_output]) | |
| if __name__ == "__main__": | |
| demo.queue(max_size=40).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True) |