File size: 21,119 Bytes
e2863bc
3960214
 
 
 
 
 
 
e2863bc
3960214
 
 
 
e2863bc
3960214
96d5f01
3960214
 
 
 
e2863bc
3960214
 
e2863bc
3960214
 
 
4bd0515
3960214
 
 
 
 
 
 
 
15b057f
3960214
 
 
 
 
e2863bc
3960214
 
 
 
 
 
 
 
 
e2863bc
3960214
 
 
e2863bc
3960214
 
 
 
 
 
 
 
 
 
 
 
 
 
e2863bc
3960214
 
 
 
 
 
 
 
 
e2863bc
3960214
 
 
 
 
 
 
e2863bc
3960214
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2863bc
3960214
 
 
 
 
 
 
e2863bc
3960214
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2863bc
3960214
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6e3398
3960214
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a6f9c6
3960214
0f86706
3960214
 
0f86706
3960214
0f86706
3960214
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2863bc
3960214
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6e3398
3960214
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6e3398
3960214
 
4bd0515
3960214
 
 
 
 
 
 
 
 
 
 
 
4bd0515
3960214
 
 
 
 
 
 
 
 
 
 
 
b6e3398
3960214
 
 
 
 
 
 
 
 
 
 
89fdd2f
3960214
 
2e16d03
3960214
eecb779
3960214
 
 
 
 
 
 
 
 
 
 
 
af7b48b
3960214
af7b48b
3960214
 
 
 
 
 
 
 
 
02060d6
43c8e00
4bd0515
 
 
 
 
 
3960214
 
af7b48b
3960214
af7b48b
3960214
af7b48b
3960214
4bd0515
 
 
 
 
 
 
 
3960214
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89e2ec5
e2863bc
3960214
f86a036
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
import spaces
import json
import math
import os
import traceback
from io import BytesIO
from typing import Any, Dict, List, Optional, Tuple
import re

import fitz  # PyMuPDF
import gradio as gr
import requests
from PIL import Image, ImageDraw, ImageFont

from model import load_model, inference_dots_ocr, inference_dolphin

# Constants
MIN_PIXELS = 3136
MAX_PIXELS = 11289600
IMAGE_FACTOR = 28

# Prompts
prompt = """Please output the layout information from the PDF image, including each layout element's bbox, its category, and the corresponding text content within the bbox.

1. Bbox format: [x1, y1, x2, y2]
2. Layout Categories: ['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title']
3. Text Extraction & Formatting Rules:
    - Picture: omit the text field
    - Formula: format as LaTeX
    - Table: format as HTML
    - Others: format as Markdown
4. Constraints:
    - Use original text, no translation
    - Sort elements by human reading order
5. Final Output: Single JSON object
"""

# Load models at startup
models = {
    "dots.ocr": load_model("dots.ocr"),
    "Dolphin": load_model("Dolphin")
}

# Global state for PDF handling
pdf_cache = {
    "images": [],
    "current_page": 0,
    "total_pages": 0,
    "file_type": None,
    "is_parsed": False,
    "results": []
}

# Utility functions
def round_by_factor(number: int, factor: int) -> int:
    return round(number / factor) * factor

def smart_resize(height: int, width: int, factor: int = 28, min_pixels: int = 3136, max_pixels: int = 11289600):
    if max(height, width) / min(height, width) > 200:
        raise ValueError(f"Aspect ratio must be < 200, got {max(height, width) / min(height, width)}")
    h_bar = max(factor, round_by_factor(height, factor))
    w_bar = max(factor, round_by_factor(width, factor))
    if h_bar * w_bar > max_pixels:
        beta = math.sqrt((height * width) / max_pixels)
        h_bar = round_by_factor(height / beta, factor)
        w_bar = round_by_factor(width / beta, factor)
    elif h_bar * w_bar < min_pixels:
        beta = math.sqrt(min_pixels / (height * width))
        h_bar = round_by_factor(height * beta, factor)
        w_bar = round_by_factor(width * beta, factor)
    return h_bar, w_bar

def fetch_image(image_input, min_pixels: int = None, max_pixels: int = None):
    if isinstance(image_input, str):
        if image_input.startswith(("http://", "https://")):
            response = requests.get(image_input)
            image = Image.open(BytesIO(response.content)).convert('RGB')
        else:
            image = Image.open(image_input).convert('RGB')
    elif isinstance(image_input, Image.Image):
        image = image_input.convert('RGB')
    else:
        raise ValueError(f"Invalid image input type: {type(image_input)}")
    if min_pixels or max_pixels:
        min_pixels = min_pixels or MIN_PIXELS
        max_pixels = max_pixels or MAX_PIXELS
        height, width = smart_resize(image.height, image.width, factor=IMAGE_FACTOR, min_pixels=min_pixels, max_pixels=max_pixels)
        image = image.resize((width, height), Image.LANCZOS)
    return image

def load_images_from_pdf(pdf_path: str) -> List[Image.Image]:
    images = []
    try:
        pdf_document = fitz.open(pdf_path)
        for page_num in range(len(pdf_document)):
            page = pdf_document.load_page(page_num)
            mat = fitz.Matrix(2.0, 2.0)
            pix = page.get_pixmap(matrix=mat)
            img_data = pix.tobytes("ppm")
            image = Image.open(BytesIO(img_data)).convert('RGB')
            images.append(image)
        pdf_document.close()
    except Exception as e:
        print(f"Error loading PDF: {e}")
        return []
    return images

def draw_layout_on_image(image: Image.Image, layout_data: List[Dict]) -> Image.Image:
    img_copy = image.copy()
    draw = ImageDraw.Draw(img_copy)
    colors = {
        'Caption': '#FF6B6B', 'Footnote': '#4ECDC4', 'Formula': '#45B7D1', 'List-item': '#96CEB4',
        'Page-footer': '#FFEAA7', 'Page-header': '#DDA0DD', 'Picture': '#FFD93D', 'Section-header': '#6C5CE7',
        'Table': '#FD79A8', 'Text': '#74B9FF', 'Title': '#E17055'
    }
    try:
        font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 12)
    except Exception:
        font = ImageFont.load_default()
    try:
        for item in layout_data:
            if 'bbox' in item and 'category' in item:
                bbox = item['bbox']
                category = item['category']
                color = colors.get(category, '#000000')
                draw.rectangle(bbox, outline=color, width=2)
                label = category
                label_bbox = draw.textbbox((0, 0), label, font=font)
                label_width = label_bbox[2] - label_bbox[0]
                label_height = label_bbox[3] - label_bbox[1]
                label_x = bbox[0]
                label_y = max(0, bbox[1] - label_height - 2)
                draw.rectangle([label_x, label_y, label_x + label_width + 4, label_y + label_height + 2], fill=color)
                draw.text((label_x + 2, label_y + 1), label, fill='white', font=font)
    except Exception as e:
        print(f"Error drawing layout: {e}")
    return img_copy

def is_arabic_text(text: str) -> bool:
    if not text:
        return False
    header_pattern = r'^#{1,6}\s+(.+)$'
    paragraph_pattern = r'^(?!#{1,6}\s|!\[|```|\||\s*[-*+]\s|\s*\d+\.\s)(.+)$'
    content_text = []
    for line in text.split('\n'):
        line = line.strip()
        if not line:
            continue
        header_match = re.match(header_pattern, line, re.MULTILINE)
        if header_match:
            content_text.append(header_match.group(1))
            continue
        if re.match(paragraph_pattern, line, re.MULTILINE):
            content_text.append(line)
    if not content_text:
        return False
    combined_text = ' '.join(content_text)
    arabic_chars = 0
    total_chars = 0
    for char in combined_text:
        if char.isalpha():
            total_chars += 1
            if ('\u0600' <= char <= '\u06FF') or ('\u0750' <= char <= '\u077F') or ('\u08A0' <= char <= '\u08FF'):
                arabic_chars += 1
    return total_chars > 0 and (arabic_chars / total_chars) > 0.5

def layoutjson2md(image: Image.Image, layout_data: List[Dict], text_key: str = 'text') -> str:
    import base64
    markdown_lines = []
    try:
        sorted_items = sorted(layout_data, key=lambda x: (x.get('bbox', [0, 0, 0, 0])[1], x.get('bbox', [0, 0, 0, 0])[0]))
        for item in sorted_items:
            category = item.get('category', '')
            text = item.get(text_key, '')
            bbox = item.get('bbox', [])
            if category == 'Picture':
                if bbox and len(bbox) == 4:
                    try:
                        x1, y1, x2, y2 = [max(0, int(x)) if i < 2 else min(image.width if i % 2 == 0 else image.height, int(x)) for i, x in enumerate(bbox)]
                        if x2 > x1 and y2 > y1:
                            cropped_img = image.crop((x1, y1, x2, y2))
                            buffer = BytesIO()
                            cropped_img.save(buffer, format='PNG')
                            img_data = base64.b64encode(buffer.getvalue()).decode()
                            markdown_lines.append(f'<image-card alt="Image" src="data:image/png;base64,{img_data}" ></image-card>\n')
                        else:
                            markdown_lines.append('<image-card alt="Image" src="Image region detected" ></image-card>\n')
                    except Exception as e:
                        print(f"Error processing image region: {e}")
                        markdown_lines.append('<image-card alt="Image" src="Image detected" ></image-card>\n')
                else:
                    markdown_lines.append('<image-card alt="Image" src="Image detected" ></image-card>\n')
            elif not text:
                continue
            elif category == 'Title':
                markdown_lines.append(f"# {text}\n")
            elif category == 'Section-header':
                markdown_lines.append(f"## {text}\n")
            elif category == 'Text':
                markdown_lines.append(f"{text}\n")
            elif category == 'List-item':
                markdown_lines.append(f"- {text}\n")
            elif category == 'Table':
                if text.strip().startswith('<'):
                    markdown_lines.append(f"{text}\n")
                else:
                    markdown_lines.append(f"**Table:** {text}\n")
            elif category == 'Formula':
                if text.strip().startswith('$') or '\\' in text:
                    markdown_lines.append(f"$$  \n{text}\n  $$\n")
                else:
                    markdown_lines.append(f"**Formula:** {text}\n")
            elif category == 'Caption':
                markdown_lines.append(f"*{text}*\n")
            elif category == 'Footnote':
                markdown_lines.append(f"^{text}^\n")
            elif category in ['Page-header', 'Page-footer']:
                continue
            else:
                markdown_lines.append(f"{text}\n")
            markdown_lines.append("")
    except Exception as e:
        print(f"Error converting to markdown: {e}")
        return str(layout_data)
    return "\n".join(markdown_lines)

def load_file_for_preview(file_path: str) -> Tuple[Optional[Image.Image], str]:
    global pdf_cache
    if not file_path or not os.path.exists(file_path):
        return None, "No file selected"
    file_ext = os.path.splitext(file_path)[1].lower()
    try:
        if file_ext == '.pdf':
            images = load_images_from_pdf(file_path)
            if not images:
                return None, "Failed to load PDF"
            pdf_cache.update({
                "images": images,
                "current_page": 0,
                "total_pages": len(images),
                "file_type": "pdf",
                "is_parsed": False,
                "results": []
            })
            return images[0], f"Page 1 / {len(images)}"
        elif file_ext in ['.jpg', '.jpeg', '.png', '.bmp', '.tiff']:
            image = Image.open(file_path).convert('RGB')
            pdf_cache.update({
                "images": [image],
                "current_page": 0,
                "total_pages": 1,
                "file_type": "image",
                "is_parsed": False,
                "results": []
            })
            return image, "Page 1 / 1"
        else:
            return None, f"Unsupported file format: {file_ext}"
    except Exception as e:
        print(f"Error loading file: {e}")
        return None, f"Error loading file: {str(e)}"

@spaces.GPU()
def process_document(file_path, model_choice, max_tokens, min_pix, max_pix):
    global pdf_cache
    if not file_path:
        return None, "Please upload a file first.", None
    model, processor = models[model_choice]
    image, page_info = load_file_for_preview(file_path)
    if image is None:
        return None, page_info, None
    if pdf_cache["file_type"] == "pdf":
        all_results = []
        for i, img in enumerate(pdf_cache["images"]):
            if model_choice == "dots.ocr":
                raw_output = inference_dots_ocr(model, processor, img, prompt, max_tokens)
                try:
                    layout_data = json.loads(raw_output)
                    processed_image = draw_layout_on_image(img, layout_data)
                    markdown_content = layoutjson2md(img, layout_data)
                    result = {
                        'processed_image': processed_image,
                        'markdown_content': markdown_content,
                        'layout_result': layout_data
                    }
                except Exception:
                    result = {
                        'processed_image': img,
                        'markdown_content': raw_output,
                        'layout_result': None
                    }
            else:  # Dolphin
                text = inference_dolphin(model, processor, img)
                result = f"## Page {i+1}\n\n{text}" if text else "No text extracted"
            all_results.append(result)
        pdf_cache["results"] = all_results
        pdf_cache["is_parsed"] = True
        first_result = all_results[0]
        if model_choice == "dots.ocr":
            markdown_update = gr.update(value=first_result['markdown_content'], rtl=is_arabic_text(first_result['markdown_content']))
            return first_result['processed_image'], markdown_update, first_result['layout_result']
        else:
            markdown_update = gr.update(value=first_result, rtl=is_arabic_text(first_result))
            return None, markdown_update, None
    else:
        if model_choice == "dots.ocr":
            raw_output = inference_dots_ocr(model, processor, image, prompt, max_tokens)
            try:
                layout_data = json.loads(raw_output)
                processed_image = draw_layout_on_image(image, layout_data)
                markdown_content = layoutjson2md(image, layout_data)
                result = {
                    'processed_image': processed_image,
                    'markdown_content': markdown_content,
                    'layout_result': layout_data
                }
            except Exception:
                result = {
                    'processed_image': image,
                    'markdown_content': raw_output,
                    'layout_result': None
                }
            pdf_cache["results"] = [result]
        else:  # Dolphin
            text = inference_dolphin(model, processor, image)
            result = text if text else "No text extracted"
            pdf_cache["results"] = [result]
        pdf_cache["is_parsed"] = True
        if model_choice == "dots.ocr":
            markdown_update = gr.update(value=result['markdown_content'], rtl=is_arabic_text(result['markdown_content']))
            return result['processed_image'], markdown_update, result['layout_result']
        else:
            markdown_update = gr.update(value=result, rtl=is_arabic_text(result))
            return None, markdown_update, None

def turn_page(direction: str) -> Tuple[Optional[Image.Image], str, Any, Optional[Image.Image], Optional[Dict]]:
    global pdf_cache
    ifif not pdf_cache["images"]:
        return None, '<div class="page-info">No file loaded</div>', "No results yet", None, None
    if direction == "prev":
        pdf_cache["current_page"] = max(0, pdf_cache["current_page"] - 1)
    elif direction == "next":
        pdf_cache["current_page"] = min(pdf_cache["total_pages"] - 1, pdf_cache["current_page"] + 1)
    index = pdf_cache["current_page"]
    current_image_preview = pdf_cache["images"][index]
    page_info_html = f'<div class="page-info">Page {index + 1} / {pdf_cache["total_pages"]}</div>'
    if pdf_cache["is_parsed"] and index < len(pdf_cache["results"]):
        result = pdf_cache["results"][index]
        if isinstance(result, dict):  # dots.ocr
            markdown_content = result.get('markdown_content',28 content = result.get('markdown_content', 'No content available')
            processed_img = result.get('processed_image', None)
            layout_json = result.get('layout_result', None)
        else:  # Dolphin
            markdown_content = result
            processed_img = None
            layout_json = None
    else:
        markdown_content = "Page not processed yet"
        processed_img = None
        layout_json = None
    markdown_update = gr.update(value=markdown_content, rtl=is_arabic_text(markdown_content))
    return current_image_preview, page_info_html, markdown_update, processed_img, layout_json

def create_gradio_interface():
    css = """
    .main-container { max-width: 1400px; margin: 0 auto; }
    .header-text { text-align: center; color: #2c3e50; margin-bottom: 20px; }
    .process-button { border: none !important; color: white !important; font-weight: bold !important; }
    .process-button:hover { transform: translateY(-2px) !important; box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important; }
    .info-box { border: 1px solid #dee2e6; border-radius: 8px; padding: 15px; margin: 10px 0; }
    .page-info { text-align: center; padding: 8px 16px; border-radius: 20px; font-weight: bold; margin: 10px 0; }
    .model-status { padding: 10px; border-radius: 8px; margin: 10px 0; text-align: center; font-weight: bold; }
    .status-ready { background: #d1edff; color: #0c5460; border: 1px solid #b8daff; }
    """
    with gr.Blocks(theme="bethecloud/storj_theme", css=css) as demo:
        gr.HTML("""
        <div class="title" style="text-align: center">
            <h1>Dot<span style="color: red;">●</span><strong></strong>OCR vs Dolphin🐬</h1>
            <p style="font-size: 1.1em; color: #6b7280; margin-bottom: 0.6em;">
                Advanced vision-language model for image/PDF to markdown document processing
            </p>
        </div>
        """)
        with gr.Row():
            with gr.Column(scale=1):
                file_input = gr.File(
                    label="Upload Image or PDF",
                    file_types=[".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".pdf"],
                    type="filepath"
                )
                image_preview = gr.Image(label="Preview", type="pil", interactive=False, height=300)
                with gr.Row():
                    prev_page_btn = gr.Button("⬅ Previous", size="md")
                    page_info = gr.HTML('<div class="page-info">No file loaded</div>')
                    next_page_btn = gr.Button("Next ➡", size="md")
                model_choice = gr.Radio(
                    choices=["dots.ocr", "Dolphin"],
                    label="Select Model",
                    value="dots.ocr"
                )
                with gr.Accordion("Advanced Settings", open=False):
                    max_new_tokens = gr.Slider(minimum=1000, maximum=32000, value=24000, step=1000, label="Max New Tokens")
                    min_pixels = gr.Number(value=MIN_PIXELS, label="Min Pixels")
                    max_pixels = gr.Number(value=MAX_PIXELS, label="Max Pixels")
                process_btn = gr.Button("🔥 Process Document", variant="primary", elem_classes=["process-button"], size="lg")
                clear_btn = gr.Button("Clear Document", variant="secondary")
                # Add Examples component
                examples = gr.Examples(
                    examples=["examples/sample_image1.png", "examples/sample_image2.png", "examples/sample_pdf.pdf"],
                    inputs=file_input,
                    label="Example Documents"
                )
            with gr.Column(scale=2):
                with gr.Tabs():
                    with gr.Tab("✦︎ Processed Image"):
                        processed_image = gr.Image(label="Image with Layout Detection", type="pil", interactive=False, height=500)
                    with gr.Tab("🀥 Extracted Content"):
                        markdown_output = gr.Markdown(value="Click 'Process Document' to see extracted content...", height=500)
                    with gr.Tab("⏲ Layout JSON"):
                        json_output = gr.JSON(label="Layout Analysis Results", value=None)

                with gr.Row():
                    examples = gr.Examples(
                        examples=["examples/sample_image1.png", "examples/sample_image2.png", "examples/sample_pdf.pdf"],
                        inputs=file_input,
                        label="Example Documents"
                )
                        
        def handle_file_upload(file_path):
            image, page_info = load_file_for_preview(file_path)
            return image, page_info
        
        def clear_all():
            global pdf_cache
            pdf_cache = {"images": [], "current_page": 0, "total_pages": 0, "file_type": None, "is_parsed": False, "results": []}
            return None, None, '<div class="page-info">No file loaded</div>', None, "Click 'Process Document' to see extracted content...", None
        
        file_input.change(handle_file_upload, inputs=[file_input], outputs=[image_preview, page_info])
        prev_page_btn.click(lambda: turn_page("prev"), outputs=[image_preview, page_info, markdown_output, processed_image, json_output])
        next_page_btn.click(lambda: turn_page("next"), outputs=[image_preview, page_info, markdown_output, processed_image, json_output])
        process_btn.click(
            process_document,
            inputs=[file_input, model_choice, max_new_tokens, min_pixels, max_pixels],
            outputs=[processed_image, markdown_output, json_output]
        )
        clear_btn.click(
            clear_all,
            outputs=[file_input, image_preview, page_info, processed_image, markdown_output, json_output]
        )
    return demo

if __name__ == "__main__":
    demo = create_gradio_interface()
    demo.queue(max_size=30).launch(share=False, debug=True, show_error=True)