Spaces:
Running
on
Zero
Running
on
Zero
File size: 21,119 Bytes
e2863bc 3960214 e2863bc 3960214 e2863bc 3960214 96d5f01 3960214 e2863bc 3960214 e2863bc 3960214 4bd0515 3960214 15b057f 3960214 e2863bc 3960214 e2863bc 3960214 e2863bc 3960214 e2863bc 3960214 e2863bc 3960214 e2863bc 3960214 e2863bc 3960214 e2863bc 3960214 e2863bc 3960214 b6e3398 3960214 7a6f9c6 3960214 0f86706 3960214 0f86706 3960214 0f86706 3960214 e2863bc 3960214 b6e3398 3960214 b6e3398 3960214 4bd0515 3960214 4bd0515 3960214 b6e3398 3960214 89fdd2f 3960214 2e16d03 3960214 eecb779 3960214 af7b48b 3960214 af7b48b 3960214 02060d6 43c8e00 4bd0515 3960214 af7b48b 3960214 af7b48b 3960214 af7b48b 3960214 4bd0515 3960214 89e2ec5 e2863bc 3960214 f86a036 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 |
import spaces
import json
import math
import os
import traceback
from io import BytesIO
from typing import Any, Dict, List, Optional, Tuple
import re
import fitz # PyMuPDF
import gradio as gr
import requests
from PIL import Image, ImageDraw, ImageFont
from model import load_model, inference_dots_ocr, inference_dolphin
# Constants
MIN_PIXELS = 3136
MAX_PIXELS = 11289600
IMAGE_FACTOR = 28
# Prompts
prompt = """Please output the layout information from the PDF image, including each layout element's bbox, its category, and the corresponding text content within the bbox.
1. Bbox format: [x1, y1, x2, y2]
2. Layout Categories: ['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title']
3. Text Extraction & Formatting Rules:
- Picture: omit the text field
- Formula: format as LaTeX
- Table: format as HTML
- Others: format as Markdown
4. Constraints:
- Use original text, no translation
- Sort elements by human reading order
5. Final Output: Single JSON object
"""
# Load models at startup
models = {
"dots.ocr": load_model("dots.ocr"),
"Dolphin": load_model("Dolphin")
}
# Global state for PDF handling
pdf_cache = {
"images": [],
"current_page": 0,
"total_pages": 0,
"file_type": None,
"is_parsed": False,
"results": []
}
# Utility functions
def round_by_factor(number: int, factor: int) -> int:
return round(number / factor) * factor
def smart_resize(height: int, width: int, factor: int = 28, min_pixels: int = 3136, max_pixels: int = 11289600):
if max(height, width) / min(height, width) > 200:
raise ValueError(f"Aspect ratio must be < 200, got {max(height, width) / min(height, width)}")
h_bar = max(factor, round_by_factor(height, factor))
w_bar = max(factor, round_by_factor(width, factor))
if h_bar * w_bar > max_pixels:
beta = math.sqrt((height * width) / max_pixels)
h_bar = round_by_factor(height / beta, factor)
w_bar = round_by_factor(width / beta, factor)
elif h_bar * w_bar < min_pixels:
beta = math.sqrt(min_pixels / (height * width))
h_bar = round_by_factor(height * beta, factor)
w_bar = round_by_factor(width * beta, factor)
return h_bar, w_bar
def fetch_image(image_input, min_pixels: int = None, max_pixels: int = None):
if isinstance(image_input, str):
if image_input.startswith(("http://", "https://")):
response = requests.get(image_input)
image = Image.open(BytesIO(response.content)).convert('RGB')
else:
image = Image.open(image_input).convert('RGB')
elif isinstance(image_input, Image.Image):
image = image_input.convert('RGB')
else:
raise ValueError(f"Invalid image input type: {type(image_input)}")
if min_pixels or max_pixels:
min_pixels = min_pixels or MIN_PIXELS
max_pixels = max_pixels or MAX_PIXELS
height, width = smart_resize(image.height, image.width, factor=IMAGE_FACTOR, min_pixels=min_pixels, max_pixels=max_pixels)
image = image.resize((width, height), Image.LANCZOS)
return image
def load_images_from_pdf(pdf_path: str) -> List[Image.Image]:
images = []
try:
pdf_document = fitz.open(pdf_path)
for page_num in range(len(pdf_document)):
page = pdf_document.load_page(page_num)
mat = fitz.Matrix(2.0, 2.0)
pix = page.get_pixmap(matrix=mat)
img_data = pix.tobytes("ppm")
image = Image.open(BytesIO(img_data)).convert('RGB')
images.append(image)
pdf_document.close()
except Exception as e:
print(f"Error loading PDF: {e}")
return []
return images
def draw_layout_on_image(image: Image.Image, layout_data: List[Dict]) -> Image.Image:
img_copy = image.copy()
draw = ImageDraw.Draw(img_copy)
colors = {
'Caption': '#FF6B6B', 'Footnote': '#4ECDC4', 'Formula': '#45B7D1', 'List-item': '#96CEB4',
'Page-footer': '#FFEAA7', 'Page-header': '#DDA0DD', 'Picture': '#FFD93D', 'Section-header': '#6C5CE7',
'Table': '#FD79A8', 'Text': '#74B9FF', 'Title': '#E17055'
}
try:
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 12)
except Exception:
font = ImageFont.load_default()
try:
for item in layout_data:
if 'bbox' in item and 'category' in item:
bbox = item['bbox']
category = item['category']
color = colors.get(category, '#000000')
draw.rectangle(bbox, outline=color, width=2)
label = category
label_bbox = draw.textbbox((0, 0), label, font=font)
label_width = label_bbox[2] - label_bbox[0]
label_height = label_bbox[3] - label_bbox[1]
label_x = bbox[0]
label_y = max(0, bbox[1] - label_height - 2)
draw.rectangle([label_x, label_y, label_x + label_width + 4, label_y + label_height + 2], fill=color)
draw.text((label_x + 2, label_y + 1), label, fill='white', font=font)
except Exception as e:
print(f"Error drawing layout: {e}")
return img_copy
def is_arabic_text(text: str) -> bool:
if not text:
return False
header_pattern = r'^#{1,6}\s+(.+)$'
paragraph_pattern = r'^(?!#{1,6}\s|!\[|```|\||\s*[-*+]\s|\s*\d+\.\s)(.+)$'
content_text = []
for line in text.split('\n'):
line = line.strip()
if not line:
continue
header_match = re.match(header_pattern, line, re.MULTILINE)
if header_match:
content_text.append(header_match.group(1))
continue
if re.match(paragraph_pattern, line, re.MULTILINE):
content_text.append(line)
if not content_text:
return False
combined_text = ' '.join(content_text)
arabic_chars = 0
total_chars = 0
for char in combined_text:
if char.isalpha():
total_chars += 1
if ('\u0600' <= char <= '\u06FF') or ('\u0750' <= char <= '\u077F') or ('\u08A0' <= char <= '\u08FF'):
arabic_chars += 1
return total_chars > 0 and (arabic_chars / total_chars) > 0.5
def layoutjson2md(image: Image.Image, layout_data: List[Dict], text_key: str = 'text') -> str:
import base64
markdown_lines = []
try:
sorted_items = sorted(layout_data, key=lambda x: (x.get('bbox', [0, 0, 0, 0])[1], x.get('bbox', [0, 0, 0, 0])[0]))
for item in sorted_items:
category = item.get('category', '')
text = item.get(text_key, '')
bbox = item.get('bbox', [])
if category == 'Picture':
if bbox and len(bbox) == 4:
try:
x1, y1, x2, y2 = [max(0, int(x)) if i < 2 else min(image.width if i % 2 == 0 else image.height, int(x)) for i, x in enumerate(bbox)]
if x2 > x1 and y2 > y1:
cropped_img = image.crop((x1, y1, x2, y2))
buffer = BytesIO()
cropped_img.save(buffer, format='PNG')
img_data = base64.b64encode(buffer.getvalue()).decode()
markdown_lines.append(f'<image-card alt="Image" src="data:image/png;base64,{img_data}" ></image-card>\n')
else:
markdown_lines.append('<image-card alt="Image" src="Image region detected" ></image-card>\n')
except Exception as e:
print(f"Error processing image region: {e}")
markdown_lines.append('<image-card alt="Image" src="Image detected" ></image-card>\n')
else:
markdown_lines.append('<image-card alt="Image" src="Image detected" ></image-card>\n')
elif not text:
continue
elif category == 'Title':
markdown_lines.append(f"# {text}\n")
elif category == 'Section-header':
markdown_lines.append(f"## {text}\n")
elif category == 'Text':
markdown_lines.append(f"{text}\n")
elif category == 'List-item':
markdown_lines.append(f"- {text}\n")
elif category == 'Table':
if text.strip().startswith('<'):
markdown_lines.append(f"{text}\n")
else:
markdown_lines.append(f"**Table:** {text}\n")
elif category == 'Formula':
if text.strip().startswith('$') or '\\' in text:
markdown_lines.append(f"$$ \n{text}\n $$\n")
else:
markdown_lines.append(f"**Formula:** {text}\n")
elif category == 'Caption':
markdown_lines.append(f"*{text}*\n")
elif category == 'Footnote':
markdown_lines.append(f"^{text}^\n")
elif category in ['Page-header', 'Page-footer']:
continue
else:
markdown_lines.append(f"{text}\n")
markdown_lines.append("")
except Exception as e:
print(f"Error converting to markdown: {e}")
return str(layout_data)
return "\n".join(markdown_lines)
def load_file_for_preview(file_path: str) -> Tuple[Optional[Image.Image], str]:
global pdf_cache
if not file_path or not os.path.exists(file_path):
return None, "No file selected"
file_ext = os.path.splitext(file_path)[1].lower()
try:
if file_ext == '.pdf':
images = load_images_from_pdf(file_path)
if not images:
return None, "Failed to load PDF"
pdf_cache.update({
"images": images,
"current_page": 0,
"total_pages": len(images),
"file_type": "pdf",
"is_parsed": False,
"results": []
})
return images[0], f"Page 1 / {len(images)}"
elif file_ext in ['.jpg', '.jpeg', '.png', '.bmp', '.tiff']:
image = Image.open(file_path).convert('RGB')
pdf_cache.update({
"images": [image],
"current_page": 0,
"total_pages": 1,
"file_type": "image",
"is_parsed": False,
"results": []
})
return image, "Page 1 / 1"
else:
return None, f"Unsupported file format: {file_ext}"
except Exception as e:
print(f"Error loading file: {e}")
return None, f"Error loading file: {str(e)}"
@spaces.GPU()
def process_document(file_path, model_choice, max_tokens, min_pix, max_pix):
global pdf_cache
if not file_path:
return None, "Please upload a file first.", None
model, processor = models[model_choice]
image, page_info = load_file_for_preview(file_path)
if image is None:
return None, page_info, None
if pdf_cache["file_type"] == "pdf":
all_results = []
for i, img in enumerate(pdf_cache["images"]):
if model_choice == "dots.ocr":
raw_output = inference_dots_ocr(model, processor, img, prompt, max_tokens)
try:
layout_data = json.loads(raw_output)
processed_image = draw_layout_on_image(img, layout_data)
markdown_content = layoutjson2md(img, layout_data)
result = {
'processed_image': processed_image,
'markdown_content': markdown_content,
'layout_result': layout_data
}
except Exception:
result = {
'processed_image': img,
'markdown_content': raw_output,
'layout_result': None
}
else: # Dolphin
text = inference_dolphin(model, processor, img)
result = f"## Page {i+1}\n\n{text}" if text else "No text extracted"
all_results.append(result)
pdf_cache["results"] = all_results
pdf_cache["is_parsed"] = True
first_result = all_results[0]
if model_choice == "dots.ocr":
markdown_update = gr.update(value=first_result['markdown_content'], rtl=is_arabic_text(first_result['markdown_content']))
return first_result['processed_image'], markdown_update, first_result['layout_result']
else:
markdown_update = gr.update(value=first_result, rtl=is_arabic_text(first_result))
return None, markdown_update, None
else:
if model_choice == "dots.ocr":
raw_output = inference_dots_ocr(model, processor, image, prompt, max_tokens)
try:
layout_data = json.loads(raw_output)
processed_image = draw_layout_on_image(image, layout_data)
markdown_content = layoutjson2md(image, layout_data)
result = {
'processed_image': processed_image,
'markdown_content': markdown_content,
'layout_result': layout_data
}
except Exception:
result = {
'processed_image': image,
'markdown_content': raw_output,
'layout_result': None
}
pdf_cache["results"] = [result]
else: # Dolphin
text = inference_dolphin(model, processor, image)
result = text if text else "No text extracted"
pdf_cache["results"] = [result]
pdf_cache["is_parsed"] = True
if model_choice == "dots.ocr":
markdown_update = gr.update(value=result['markdown_content'], rtl=is_arabic_text(result['markdown_content']))
return result['processed_image'], markdown_update, result['layout_result']
else:
markdown_update = gr.update(value=result, rtl=is_arabic_text(result))
return None, markdown_update, None
def turn_page(direction: str) -> Tuple[Optional[Image.Image], str, Any, Optional[Image.Image], Optional[Dict]]:
global pdf_cache
ifਮ
if not pdf_cache["images"]:
return None, '<div class="page-info">No file loaded</div>', "No results yet", None, None
if direction == "prev":
pdf_cache["current_page"] = max(0, pdf_cache["current_page"] - 1)
elif direction == "next":
pdf_cache["current_page"] = min(pdf_cache["total_pages"] - 1, pdf_cache["current_page"] + 1)
index = pdf_cache["current_page"]
current_image_preview = pdf_cache["images"][index]
page_info_html = f'<div class="page-info">Page {index + 1} / {pdf_cache["total_pages"]}</div>'
if pdf_cache["is_parsed"] and index < len(pdf_cache["results"]):
result = pdf_cache["results"][index]
if isinstance(result, dict): # dots.ocr
markdown_content = result.get('markdown_content',28 content = result.get('markdown_content', 'No content available')
processed_img = result.get('processed_image', None)
layout_json = result.get('layout_result', None)
else: # Dolphin
markdown_content = result
processed_img = None
layout_json = None
else:
markdown_content = "Page not processed yet"
processed_img = None
layout_json = None
markdown_update = gr.update(value=markdown_content, rtl=is_arabic_text(markdown_content))
return current_image_preview, page_info_html, markdown_update, processed_img, layout_json
def create_gradio_interface():
css = """
.main-container { max-width: 1400px; margin: 0 auto; }
.header-text { text-align: center; color: #2c3e50; margin-bottom: 20px; }
.process-button { border: none !important; color: white !important; font-weight: bold !important; }
.process-button:hover { transform: translateY(-2px) !important; box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important; }
.info-box { border: 1px solid #dee2e6; border-radius: 8px; padding: 15px; margin: 10px 0; }
.page-info { text-align: center; padding: 8px 16px; border-radius: 20px; font-weight: bold; margin: 10px 0; }
.model-status { padding: 10px; border-radius: 8px; margin: 10px 0; text-align: center; font-weight: bold; }
.status-ready { background: #d1edff; color: #0c5460; border: 1px solid #b8daff; }
"""
with gr.Blocks(theme="bethecloud/storj_theme", css=css) as demo:
gr.HTML("""
<div class="title" style="text-align: center">
<h1>Dot<span style="color: red;">●</span><strong></strong>OCR vs Dolphin🐬</h1>
<p style="font-size: 1.1em; color: #6b7280; margin-bottom: 0.6em;">
Advanced vision-language model for image/PDF to markdown document processing
</p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(
label="Upload Image or PDF",
file_types=[".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".pdf"],
type="filepath"
)
image_preview = gr.Image(label="Preview", type="pil", interactive=False, height=300)
with gr.Row():
prev_page_btn = gr.Button("⬅ Previous", size="md")
page_info = gr.HTML('<div class="page-info">No file loaded</div>')
next_page_btn = gr.Button("Next ➡", size="md")
model_choice = gr.Radio(
choices=["dots.ocr", "Dolphin"],
label="Select Model",
value="dots.ocr"
)
with gr.Accordion("Advanced Settings", open=False):
max_new_tokens = gr.Slider(minimum=1000, maximum=32000, value=24000, step=1000, label="Max New Tokens")
min_pixels = gr.Number(value=MIN_PIXELS, label="Min Pixels")
max_pixels = gr.Number(value=MAX_PIXELS, label="Max Pixels")
process_btn = gr.Button("🔥 Process Document", variant="primary", elem_classes=["process-button"], size="lg")
clear_btn = gr.Button("Clear Document", variant="secondary")
# Add Examples component
examples = gr.Examples(
examples=["examples/sample_image1.png", "examples/sample_image2.png", "examples/sample_pdf.pdf"],
inputs=file_input,
label="Example Documents"
)
with gr.Column(scale=2):
with gr.Tabs():
with gr.Tab("✦︎ Processed Image"):
processed_image = gr.Image(label="Image with Layout Detection", type="pil", interactive=False, height=500)
with gr.Tab("🀥 Extracted Content"):
markdown_output = gr.Markdown(value="Click 'Process Document' to see extracted content...", height=500)
with gr.Tab("⏲ Layout JSON"):
json_output = gr.JSON(label="Layout Analysis Results", value=None)
with gr.Row():
examples = gr.Examples(
examples=["examples/sample_image1.png", "examples/sample_image2.png", "examples/sample_pdf.pdf"],
inputs=file_input,
label="Example Documents"
)
def handle_file_upload(file_path):
image, page_info = load_file_for_preview(file_path)
return image, page_info
def clear_all():
global pdf_cache
pdf_cache = {"images": [], "current_page": 0, "total_pages": 0, "file_type": None, "is_parsed": False, "results": []}
return None, None, '<div class="page-info">No file loaded</div>', None, "Click 'Process Document' to see extracted content...", None
file_input.change(handle_file_upload, inputs=[file_input], outputs=[image_preview, page_info])
prev_page_btn.click(lambda: turn_page("prev"), outputs=[image_preview, page_info, markdown_output, processed_image, json_output])
next_page_btn.click(lambda: turn_page("next"), outputs=[image_preview, page_info, markdown_output, processed_image, json_output])
process_btn.click(
process_document,
inputs=[file_input, model_choice, max_new_tokens, min_pixels, max_pixels],
outputs=[processed_image, markdown_output, json_output]
)
clear_btn.click(
clear_all,
outputs=[file_input, image_preview, page_info, processed_image, markdown_output, json_output]
)
return demo
if __name__ == "__main__":
demo = create_gradio_interface()
demo.queue(max_size=30).launch(share=False, debug=True, show_error=True) |