Spaces:
Running
on
Zero
Running
on
Zero
removed video inference settings
Browse files
app.py
CHANGED
|
@@ -3,7 +3,6 @@ import random
|
|
| 3 |
import uuid
|
| 4 |
import json
|
| 5 |
import time
|
| 6 |
-
import asyncio
|
| 7 |
from threading import Thread
|
| 8 |
from typing import Iterable
|
| 9 |
|
|
@@ -12,7 +11,6 @@ import spaces
|
|
| 12 |
import torch
|
| 13 |
import numpy as np
|
| 14 |
from PIL import Image
|
| 15 |
-
import cv2
|
| 16 |
|
| 17 |
from transformers import (
|
| 18 |
Qwen2VLForConditionalGeneration,
|
|
@@ -158,7 +156,6 @@ div.no-padding { padding: 0 !important; }
|
|
| 158 |
"""
|
| 159 |
|
| 160 |
# Constants for text generation
|
| 161 |
-
MAX_MAX_NEW_TOKENS = 2048
|
| 162 |
DEFAULT_MAX_NEW_TOKENS = 1024
|
| 163 |
# Increased max_length to accommodate more complex inputs, especially with multiple images
|
| 164 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "8192"))
|
|
@@ -208,7 +205,7 @@ model_a = AutoModelForImageTextToText.from_pretrained(
|
|
| 208 |
MODEL_ID_W = "allenai/olmOCR-7B-0725"
|
| 209 |
processor_w = AutoProcessor.from_pretrained(MODEL_ID_W, trust_remote_code=True)
|
| 210 |
model_w = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 211 |
-
MODEL_ID_W,
|
| 212 |
trust_remote_code=True,
|
| 213 |
torch_dtype=torch.float16
|
| 214 |
).to(device).eval()
|
|
@@ -222,35 +219,9 @@ model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
|
| 222 |
torch_dtype=torch.float16
|
| 223 |
).to(device).eval()
|
| 224 |
|
| 225 |
-
def downsample_video(video_path):
|
| 226 |
-
"""
|
| 227 |
-
Downsamples the video to evenly spaced frames.
|
| 228 |
-
Each frame is returned as a PIL image along with its timestamp.
|
| 229 |
-
"""
|
| 230 |
-
vidcap = cv2.VideoCapture(video_path)
|
| 231 |
-
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 232 |
-
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
| 233 |
-
frames = []
|
| 234 |
-
# Use a maximum of 10 frames to avoid excessive memory usage
|
| 235 |
-
frame_indices = np.linspace(0, total_frames - 1, min(total_frames, 10), dtype=int)
|
| 236 |
-
for i in frame_indices:
|
| 237 |
-
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
| 238 |
-
success, image = vidcap.read()
|
| 239 |
-
if success:
|
| 240 |
-
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 241 |
-
pil_image = Image.fromarray(image)
|
| 242 |
-
timestamp = round(i / fps, 2)
|
| 243 |
-
frames.append((pil_image, timestamp))
|
| 244 |
-
vidcap.release()
|
| 245 |
-
return frames
|
| 246 |
|
| 247 |
@spaces.GPU
|
| 248 |
-
def generate_image(model_name: str, text: str, image: Image.Image
|
| 249 |
-
max_new_tokens: int = 1024,
|
| 250 |
-
temperature: float = 0.6,
|
| 251 |
-
top_p: float = 0.9,
|
| 252 |
-
top_k: int = 50,
|
| 253 |
-
repetition_penalty: float = 1.2):
|
| 254 |
"""
|
| 255 |
Generates responses using the selected model for image input.
|
| 256 |
Yields raw text and Markdown-formatted text.
|
|
@@ -286,8 +257,7 @@ def generate_image(model_name: str, text: str, image: Image.Image,
|
|
| 286 |
]
|
| 287 |
}]
|
| 288 |
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 289 |
-
|
| 290 |
-
# FIX: Set truncation to False to avoid the ValueError
|
| 291 |
inputs = processor(
|
| 292 |
text=[prompt_full],
|
| 293 |
images=[image],
|
|
@@ -296,7 +266,7 @@ def generate_image(model_name: str, text: str, image: Image.Image,
|
|
| 296 |
).to(device)
|
| 297 |
|
| 298 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
| 299 |
-
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens":
|
| 300 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 301 |
thread.start()
|
| 302 |
buffer = ""
|
|
@@ -306,138 +276,43 @@ def generate_image(model_name: str, text: str, image: Image.Image,
|
|
| 306 |
time.sleep(0.01)
|
| 307 |
yield buffer, buffer
|
| 308 |
|
| 309 |
-
@spaces.GPU
|
| 310 |
-
def generate_video(model_name: str, text: str, video_path: str,
|
| 311 |
-
max_new_tokens: int = 1024,
|
| 312 |
-
temperature: float = 0.6,
|
| 313 |
-
top_p: float = 0.9,
|
| 314 |
-
top_k: int = 50,
|
| 315 |
-
repetition_penalty: float = 1.2):
|
| 316 |
-
"""
|
| 317 |
-
Generates responses using the selected model for video input.
|
| 318 |
-
Yields raw text and Markdown-formatted text.
|
| 319 |
-
"""
|
| 320 |
-
if model_name == "RolmOCR-7B":
|
| 321 |
-
processor = processor_m
|
| 322 |
-
model = model_m
|
| 323 |
-
elif model_name == "Qwen2-VL-OCR-2B":
|
| 324 |
-
processor = processor_x
|
| 325 |
-
model = model_x
|
| 326 |
-
elif model_name == "Nanonets-OCR2-3B":
|
| 327 |
-
processor = processor_v
|
| 328 |
-
model = model_v
|
| 329 |
-
elif model_name == "Aya-Vision-8B":
|
| 330 |
-
processor = processor_a
|
| 331 |
-
model = model_a
|
| 332 |
-
elif model_name == "olmOCR-7B-0725":
|
| 333 |
-
processor = processor_w
|
| 334 |
-
model = model_w
|
| 335 |
-
else:
|
| 336 |
-
yield "Invalid model selected.", "Invalid model selected."
|
| 337 |
-
return
|
| 338 |
-
|
| 339 |
-
if video_path is None:
|
| 340 |
-
yield "Please upload a video.", "Please upload a video."
|
| 341 |
-
return
|
| 342 |
-
|
| 343 |
-
frames_with_ts = downsample_video(video_path)
|
| 344 |
-
images_for_processor = [frame for frame, ts in frames_with_ts]
|
| 345 |
|
| 346 |
-
|
| 347 |
-
for frame in images_for_processor:
|
| 348 |
-
messages[0]["content"].insert(0, {"type": "image"})
|
| 349 |
-
|
| 350 |
-
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 351 |
-
|
| 352 |
-
inputs = processor(
|
| 353 |
-
text=[prompt_full],
|
| 354 |
-
images=images_for_processor,
|
| 355 |
-
return_tensors="pt",
|
| 356 |
-
padding=True
|
| 357 |
-
).to(device)
|
| 358 |
-
|
| 359 |
-
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
| 360 |
-
generation_kwargs = {
|
| 361 |
-
**inputs,
|
| 362 |
-
"streamer": streamer,
|
| 363 |
-
"max_new_tokens": max_new_tokens,
|
| 364 |
-
"do_sample": True,
|
| 365 |
-
"temperature": temperature,
|
| 366 |
-
"top_p": top_p,
|
| 367 |
-
"top_k": top_k,
|
| 368 |
-
"repetition_penalty": repetition_penalty,
|
| 369 |
-
}
|
| 370 |
-
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 371 |
-
thread.start()
|
| 372 |
-
buffer = ""
|
| 373 |
-
for new_text in streamer:
|
| 374 |
-
buffer += new_text
|
| 375 |
-
buffer = buffer.replace("<|im_end|>", "")
|
| 376 |
-
time.sleep(0.01)
|
| 377 |
-
yield buffer, buffer
|
| 378 |
-
|
| 379 |
-
# Define examples for image and video inference
|
| 380 |
image_examples = [
|
| 381 |
-
["Extract the full page.", "images/ocr.png"],
|
| 382 |
-
["Extract the content.", "images/4.png"],
|
| 383 |
["Convert this page to doc [table] precisely for markdown.", "images/0.png"]
|
| 384 |
]
|
| 385 |
|
| 386 |
-
video_examples = [
|
| 387 |
-
["Explain the Ad in Detail.", "videos/1.mp4"],
|
| 388 |
-
]
|
| 389 |
|
| 390 |
# Create the Gradio Interface
|
| 391 |
with gr.Blocks(css=css, theme=thistle_theme) as demo:
|
| 392 |
gr.Markdown("# **Multimodal OCR**", elem_id="main-title")
|
| 393 |
with gr.Row():
|
| 394 |
with gr.Column(scale=2):
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
inputs=[image_query, image_upload]
|
| 403 |
-
)
|
| 404 |
-
with gr.TabItem("Video Inference"):
|
| 405 |
-
video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
|
| 406 |
-
video_upload = gr.Video(label="Upload Video", height=290)
|
| 407 |
-
video_submit = gr.Button("Submit", variant="primary")
|
| 408 |
-
gr.Examples(
|
| 409 |
-
examples=video_examples,
|
| 410 |
-
inputs=[video_query, video_upload]
|
| 411 |
-
)
|
| 412 |
-
gr.Markdown("> Only the olmOCR and RolmOCR models currently support video inference (max video length: 30 secs).")
|
| 413 |
-
with gr.Accordion("Advanced options", open=False):
|
| 414 |
-
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
|
| 415 |
-
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
|
| 416 |
-
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
|
| 417 |
-
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
|
| 418 |
-
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
|
| 419 |
-
|
| 420 |
with gr.Column(scale=3):
|
| 421 |
gr.Markdown("## Output", elem_id="output-title")
|
| 422 |
output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=11, show_copy_button=True)
|
| 423 |
with gr.Accordion("(Result.md)", open=False):
|
| 424 |
markdown_output = gr.Markdown(label="(Result.Md)")
|
| 425 |
-
|
| 426 |
model_choice = gr.Radio(
|
| 427 |
choices=["Nanonets-OCR2-3B", "olmOCR-7B-0725", "RolmOCR-7B",
|
| 428 |
"Aya-Vision-8B", "Qwen2-VL-OCR-2B"],
|
| 429 |
label="Select Model",
|
| 430 |
value="Nanonets-OCR2-3B"
|
| 431 |
)
|
| 432 |
-
|
| 433 |
image_submit.click(
|
| 434 |
fn=generate_image,
|
| 435 |
-
inputs=[model_choice, image_query, image_upload
|
| 436 |
-
outputs=[output, markdown_output]
|
| 437 |
-
)
|
| 438 |
-
video_submit.click(
|
| 439 |
-
fn=generate_video,
|
| 440 |
-
inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
| 441 |
outputs=[output, markdown_output]
|
| 442 |
)
|
| 443 |
|
|
|
|
| 3 |
import uuid
|
| 4 |
import json
|
| 5 |
import time
|
|
|
|
| 6 |
from threading import Thread
|
| 7 |
from typing import Iterable
|
| 8 |
|
|
|
|
| 11 |
import torch
|
| 12 |
import numpy as np
|
| 13 |
from PIL import Image
|
|
|
|
| 14 |
|
| 15 |
from transformers import (
|
| 16 |
Qwen2VLForConditionalGeneration,
|
|
|
|
| 156 |
"""
|
| 157 |
|
| 158 |
# Constants for text generation
|
|
|
|
| 159 |
DEFAULT_MAX_NEW_TOKENS = 1024
|
| 160 |
# Increased max_length to accommodate more complex inputs, especially with multiple images
|
| 161 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "8192"))
|
|
|
|
| 205 |
MODEL_ID_W = "allenai/olmOCR-7B-0725"
|
| 206 |
processor_w = AutoProcessor.from_pretrained(MODEL_ID_W, trust_remote_code=True)
|
| 207 |
model_w = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 208 |
+
MODEL_ID_W,
|
| 209 |
trust_remote_code=True,
|
| 210 |
torch_dtype=torch.float16
|
| 211 |
).to(device).eval()
|
|
|
|
| 219 |
torch_dtype=torch.float16
|
| 220 |
).to(device).eval()
|
| 221 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
|
| 223 |
@spaces.GPU
|
| 224 |
+
def generate_image(model_name: str, text: str, image: Image.Image):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 225 |
"""
|
| 226 |
Generates responses using the selected model for image input.
|
| 227 |
Yields raw text and Markdown-formatted text.
|
|
|
|
| 257 |
]
|
| 258 |
}]
|
| 259 |
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 260 |
+
|
|
|
|
| 261 |
inputs = processor(
|
| 262 |
text=[prompt_full],
|
| 263 |
images=[image],
|
|
|
|
| 266 |
).to(device)
|
| 267 |
|
| 268 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
| 269 |
+
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": DEFAULT_MAX_NEW_TOKENS}
|
| 270 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 271 |
thread.start()
|
| 272 |
buffer = ""
|
|
|
|
| 276 |
time.sleep(0.01)
|
| 277 |
yield buffer, buffer
|
| 278 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 279 |
|
| 280 |
+
# Define examples for image inference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 281 |
image_examples = [
|
| 282 |
+
["Extract the full page.", "images/ocr.png"],
|
| 283 |
+
["Extract the content.", "images/4.png"],
|
| 284 |
["Convert this page to doc [table] precisely for markdown.", "images/0.png"]
|
| 285 |
]
|
| 286 |
|
|
|
|
|
|
|
|
|
|
| 287 |
|
| 288 |
# Create the Gradio Interface
|
| 289 |
with gr.Blocks(css=css, theme=thistle_theme) as demo:
|
| 290 |
gr.Markdown("# **Multimodal OCR**", elem_id="main-title")
|
| 291 |
with gr.Row():
|
| 292 |
with gr.Column(scale=2):
|
| 293 |
+
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
|
| 294 |
+
image_upload = gr.Image(type="pil", label="Upload Image", height=290)
|
| 295 |
+
image_submit = gr.Button("Submit", variant="primary")
|
| 296 |
+
gr.Examples(
|
| 297 |
+
examples=image_examples,
|
| 298 |
+
inputs=[image_query, image_upload]
|
| 299 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 300 |
with gr.Column(scale=3):
|
| 301 |
gr.Markdown("## Output", elem_id="output-title")
|
| 302 |
output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=11, show_copy_button=True)
|
| 303 |
with gr.Accordion("(Result.md)", open=False):
|
| 304 |
markdown_output = gr.Markdown(label="(Result.Md)")
|
| 305 |
+
|
| 306 |
model_choice = gr.Radio(
|
| 307 |
choices=["Nanonets-OCR2-3B", "olmOCR-7B-0725", "RolmOCR-7B",
|
| 308 |
"Aya-Vision-8B", "Qwen2-VL-OCR-2B"],
|
| 309 |
label="Select Model",
|
| 310 |
value="Nanonets-OCR2-3B"
|
| 311 |
)
|
| 312 |
+
|
| 313 |
image_submit.click(
|
| 314 |
fn=generate_image,
|
| 315 |
+
inputs=[model_choice, image_query, image_upload],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 316 |
outputs=[output, markdown_output]
|
| 317 |
)
|
| 318 |
|