import gradio as gr import subprocess import torch from PIL import Image from transformers import AutoProcessor, AutoModelForCausalLM try: subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, check=True, shell=True) except subprocess.CalledProcessError as e: print(f"Error installing flash-attn: {e}") print("Continuing without flash-attn.") device = "cuda" if torch.cuda.is_available() else "cpu" vision_language_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval() vision_language_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True) def describe_image(uploaded_image): """ Generates a detailed description of the input image. Args: uploaded_image (PIL.Image.Image or numpy.ndarray): The image to describe. Returns: str: A detailed textual description of the image. """ if not isinstance(uploaded_image, Image.Image): uploaded_image = Image.fromarray(uploaded_image) inputs = vision_language_processor(text="", images=uploaded_image, return_tensors="pt").to(device) with torch.no_grad(): generated_ids = vision_language_model.generate( input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, early_stopping=False, do_sample=False, num_beams=3, ) generated_text = vision_language_processor.batch_decode(generated_ids, skip_special_tokens=False)[0] processed_description = vision_language_processor.post_process_generation( generated_text, task="", image_size=(uploaded_image.width, uploaded_image.height) ) image_description = processed_description[""] print("\nImage description generated!:", image_description) return image_description image_description_interface = gr.Interface( fn=describe_image, inputs=gr.Image(label="Upload Image"), outputs=gr.Textbox(label="Generated Caption", lines=4, show_copy_button=True), live=False, ) image_description_interface.launch(debug=True)