prithivMLmods's picture
Update app.py
5932b47 verified
raw
history blame
2.27 kB
import gradio as gr
import subprocess
import torch
from PIL import Image
from transformers import AutoProcessor, AutoModelForCausalLM
try:
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, check=True, shell=True)
except subprocess.CalledProcessError as e:
print(f"Error installing flash-attn: {e}")
print("Continuing without flash-attn.")
device = "cuda" if torch.cuda.is_available() else "cpu"
vision_language_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval()
vision_language_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True)
def describe_image(uploaded_image):
"""
Generates a detailed description of the input image.
Args:
uploaded_image (PIL.Image.Image or numpy.ndarray): The image to describe.
Returns:
str: A detailed textual description of the image.
"""
if not isinstance(uploaded_image, Image.Image):
uploaded_image = Image.fromarray(uploaded_image)
inputs = vision_language_processor(text="<MORE_DETAILED_CAPTION>", images=uploaded_image, return_tensors="pt").to(device)
with torch.no_grad():
generated_ids = vision_language_model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
early_stopping=False,
do_sample=False,
num_beams=3,
)
generated_text = vision_language_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
processed_description = vision_language_processor.post_process_generation(
generated_text,
task="<MORE_DETAILED_CAPTION>",
image_size=(uploaded_image.width, uploaded_image.height)
)
image_description = processed_description["<MORE_DETAILED_CAPTION>"]
print("\nImage description generated!:", image_description)
return image_description
image_description_interface = gr.Interface(
fn=describe_image,
inputs=gr.Image(label="Upload Image"),
outputs=gr.Textbox(label="Generated Caption", lines=4, show_copy_button=True),
live=False,
)
image_description_interface.launch(debug=True)