|
import gradio as gr |
|
import subprocess |
|
import torch |
|
from PIL import Image |
|
from transformers import AutoProcessor, AutoModelForCausalLM |
|
|
|
try: |
|
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, check=True, shell=True) |
|
except subprocess.CalledProcessError as e: |
|
print(f"Error installing flash-attn: {e}") |
|
print("Continuing without flash-attn.") |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
vision_language_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval() |
|
vision_language_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True) |
|
|
|
def describe_image(uploaded_image): |
|
""" |
|
Generates a detailed description of the input image. |
|
|
|
Args: |
|
uploaded_image (PIL.Image.Image or numpy.ndarray): The image to describe. |
|
|
|
Returns: |
|
str: A detailed textual description of the image. |
|
""" |
|
if not isinstance(uploaded_image, Image.Image): |
|
uploaded_image = Image.fromarray(uploaded_image) |
|
|
|
inputs = vision_language_processor(text="<MORE_DETAILED_CAPTION>", images=uploaded_image, return_tensors="pt").to(device) |
|
with torch.no_grad(): |
|
generated_ids = vision_language_model.generate( |
|
input_ids=inputs["input_ids"], |
|
pixel_values=inputs["pixel_values"], |
|
max_new_tokens=1024, |
|
early_stopping=False, |
|
do_sample=False, |
|
num_beams=3, |
|
) |
|
generated_text = vision_language_processor.batch_decode(generated_ids, skip_special_tokens=False)[0] |
|
processed_description = vision_language_processor.post_process_generation( |
|
generated_text, |
|
task="<MORE_DETAILED_CAPTION>", |
|
image_size=(uploaded_image.width, uploaded_image.height) |
|
) |
|
image_description = processed_description["<MORE_DETAILED_CAPTION>"] |
|
print("\nImage description generated!:", image_description) |
|
return image_description |
|
|
|
image_description_interface = gr.Interface( |
|
fn=describe_image, |
|
inputs=gr.Image(label="Upload Image"), |
|
outputs=gr.Textbox(label="Generated Caption", lines=4, show_copy_button=True), |
|
live=False, |
|
) |
|
|
|
image_description_interface.launch(debug=True) |