Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -15,12 +15,10 @@ from PIL import Image
|
|
15 |
import cv2
|
16 |
|
17 |
from transformers import (
|
18 |
-
AutoModelForCausalLM,
|
19 |
-
AutoTokenizer,
|
20 |
-
TextIteratorStreamer,
|
21 |
-
Qwen2VLForConditionalGeneration,
|
22 |
AutoProcessor,
|
23 |
Gemma3ForConditionalGeneration,
|
|
|
|
|
24 |
)
|
25 |
from transformers.image_utils import load_image
|
26 |
|
@@ -38,7 +36,7 @@ def progress_bar_html(label: str) -> str:
|
|
38 |
<div style="display: flex; align-items: center;">
|
39 |
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
|
40 |
<div style="width: 110px; height: 5px; background-color: #F0FFF0; border-radius: 2px; overflow: hidden;">
|
41 |
-
<div style="width: 100%; height: 100%; background-color: #00FF00
|
42 |
</div>
|
43 |
</div>
|
44 |
<style>
|
@@ -49,18 +47,7 @@ def progress_bar_html(label: str) -> str:
|
|
49 |
</style>
|
50 |
'''
|
51 |
|
52 |
-
#
|
53 |
-
|
54 |
-
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
|
55 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
56 |
-
model = AutoModelForCausalLM.from_pretrained(
|
57 |
-
model_id,
|
58 |
-
device_map="auto",
|
59 |
-
torch_dtype=torch.bfloat16,
|
60 |
-
)
|
61 |
-
model.eval()
|
62 |
-
|
63 |
-
# MULTIMODAL (OCR) MODELS
|
64 |
|
65 |
MODEL_ID_VL = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
66 |
processor = AutoProcessor.from_pretrained(MODEL_ID_VL, trust_remote_code=True)
|
@@ -102,7 +89,8 @@ ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
|
102 |
|
103 |
dtype = torch.float16 if device.type == "cuda" else torch.float32
|
104 |
|
105 |
-
|
|
|
106 |
|
107 |
gemma3_model_id = "google/gemma-3-4b-it" # alternative: google/gemma-3-12b-it
|
108 |
gemma3_model = Gemma3ForConditionalGeneration.from_pretrained(
|
@@ -111,6 +99,7 @@ gemma3_model = Gemma3ForConditionalGeneration.from_pretrained(
|
|
111 |
gemma3_processor = AutoProcessor.from_pretrained(gemma3_model_id)
|
112 |
|
113 |
# VIDEO PROCESSING HELPER
|
|
|
114 |
def downsample_video(video_path):
|
115 |
vidcap = cv2.VideoCapture(video_path)
|
116 |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
@@ -144,15 +133,12 @@ def generate(
|
|
144 |
):
|
145 |
text = input_dict["text"]
|
146 |
files = input_dict.get("files", [])
|
147 |
-
|
148 |
lower_text = text.lower().strip()
|
149 |
|
150 |
-
#
|
151 |
-
if lower_text.startswith("@
|
152 |
-
|
153 |
-
prompt_clean = re.sub(r"@gemma3", "", text, flags=re.IGNORECASE).strip().strip('"')
|
154 |
if files:
|
155 |
-
# If image files are provided, load them.
|
156 |
images = [load_image(f) for f in files]
|
157 |
messages = [{
|
158 |
"role": "user",
|
@@ -161,18 +147,18 @@ def generate(
|
|
161 |
{"type": "text", "text": prompt_clean},
|
162 |
]
|
163 |
}]
|
|
|
|
|
164 |
else:
|
165 |
messages = [
|
166 |
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
|
167 |
{"role": "user", "content": [{"type": "text", "text": prompt_clean}]}
|
168 |
]
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
streamer = TextIteratorStreamer(
|
174 |
-
gemma3_processor.tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True
|
175 |
-
)
|
176 |
generation_kwargs = {
|
177 |
**inputs,
|
178 |
"streamer": streamer,
|
@@ -183,47 +169,107 @@ def generate(
|
|
183 |
"top_k": top_k,
|
184 |
"repetition_penalty": repetition_penalty,
|
185 |
}
|
186 |
-
thread = Thread(target=
|
187 |
thread.start()
|
188 |
buffer = ""
|
189 |
-
yield progress_bar_html("Processing with
|
190 |
for new_text in streamer:
|
191 |
buffer += new_text
|
|
|
192 |
time.sleep(0.01)
|
193 |
yield buffer
|
194 |
return
|
195 |
|
196 |
-
#
|
197 |
-
if
|
198 |
-
#
|
199 |
-
|
200 |
-
if files:
|
201 |
-
#
|
|
|
202 |
video_path = files[0]
|
203 |
frames = downsample_video(video_path)
|
204 |
messages = [
|
205 |
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
|
206 |
{"role": "user", "content": [{"type": "text", "text": prompt_clean}]}
|
207 |
]
|
208 |
-
# Append each frame
|
209 |
for frame in frames:
|
210 |
image, timestamp = frame
|
211 |
image_path = f"video_frame_{uuid.uuid4().hex}.png"
|
212 |
image.save(image_path)
|
213 |
messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
|
214 |
messages[1]["content"].append({"type": "image", "url": image_path})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
else:
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
inputs = gemma3_processor.apply_chat_template(
|
221 |
messages, add_generation_prompt=True, tokenize=True,
|
222 |
return_dict=True, return_tensors="pt"
|
223 |
).to(gemma3_model.device, dtype=torch.bfloat16)
|
224 |
-
streamer = TextIteratorStreamer(
|
225 |
-
gemma3_processor.tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True
|
226 |
-
)
|
227 |
generation_kwargs = {
|
228 |
**inputs,
|
229 |
"streamer": streamer,
|
@@ -236,70 +282,16 @@ def generate(
|
|
236 |
}
|
237 |
thread = Thread(target=gemma3_model.generate, kwargs=generation_kwargs)
|
238 |
thread.start()
|
239 |
-
buffer = ""
|
240 |
-
yield progress_bar_html("Processing video with Gemma3")
|
241 |
-
for new_text in streamer:
|
242 |
-
buffer += new_text
|
243 |
-
time.sleep(0.01)
|
244 |
-
yield buffer
|
245 |
-
return
|
246 |
-
|
247 |
-
# Otherwise, handle text/chat generation.
|
248 |
-
conversation = clean_chat_history(chat_history)
|
249 |
-
conversation.append({"role": "user", "content": text})
|
250 |
-
|
251 |
-
if files:
|
252 |
-
images = [load_image(image) for image in files] if len(files) > 1 else [load_image(files[0])]
|
253 |
-
messages = [{
|
254 |
-
"role": "user",
|
255 |
-
"content": [
|
256 |
-
*[{"type": "image", "image": image} for image in images],
|
257 |
-
{"type": "text", "text": text},
|
258 |
-
]
|
259 |
-
}]
|
260 |
-
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
261 |
-
inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True).to("cuda")
|
262 |
-
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
263 |
-
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
|
264 |
-
thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
|
265 |
-
thread.start()
|
266 |
-
|
267 |
-
buffer = ""
|
268 |
-
yield progress_bar_html("Processing with Qwen2VL OCR")
|
269 |
-
for new_text in streamer:
|
270 |
-
buffer += new_text
|
271 |
-
buffer = buffer.replace("<|im_end|>", "")
|
272 |
-
time.sleep(0.01)
|
273 |
-
yield buffer
|
274 |
-
else:
|
275 |
-
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
276 |
-
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
277 |
-
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
278 |
-
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
279 |
-
input_ids = input_ids.to(model.device)
|
280 |
-
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
281 |
-
generation_kwargs = {
|
282 |
-
"input_ids": input_ids,
|
283 |
-
"streamer": streamer,
|
284 |
-
"max_new_tokens": max_new_tokens,
|
285 |
-
"do_sample": True,
|
286 |
-
"top_p": top_p,
|
287 |
-
"top_k": top_k,
|
288 |
-
"temperature": temperature,
|
289 |
-
"num_beams": 1,
|
290 |
-
"repetition_penalty": repetition_penalty,
|
291 |
-
}
|
292 |
-
t = Thread(target=model.generate, kwargs=generation_kwargs)
|
293 |
-
t.start()
|
294 |
-
|
295 |
outputs = []
|
296 |
for new_text in streamer:
|
297 |
outputs.append(new_text)
|
298 |
yield "".join(outputs)
|
299 |
-
|
300 |
final_response = "".join(outputs)
|
301 |
yield final_response
|
302 |
|
|
|
|
|
|
|
303 |
demo = gr.ChatInterface(
|
304 |
fn=generate,
|
305 |
additional_inputs=[
|
@@ -312,7 +304,7 @@ demo = gr.ChatInterface(
|
|
312 |
examples=[
|
313 |
[
|
314 |
{
|
315 |
-
"text": "
|
316 |
"files": [
|
317 |
"examples/1111.jpg",
|
318 |
"examples/2222.jpg",
|
@@ -320,24 +312,24 @@ demo = gr.ChatInterface(
|
|
320 |
],
|
321 |
}
|
322 |
],
|
323 |
-
[{"text": "
|
324 |
-
[{"text": "
|
325 |
-
[{"text": "
|
326 |
-
["
|
327 |
-
[{"text": "@
|
328 |
-
[{"text": "
|
329 |
-
[{"text": "
|
330 |
-
[{"text": "
|
331 |
-
[{"text": "
|
332 |
-
[{"text": "
|
333 |
["Python Program for Array Rotation"],
|
334 |
-
["
|
335 |
],
|
336 |
cache_examples=False,
|
337 |
type="messages",
|
338 |
-
description="# **Gemma 3
|
339 |
fill_height=True,
|
340 |
-
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple", placeholder="Tag
|
341 |
stop_btn="Stop Generation",
|
342 |
multimodal=True,
|
343 |
)
|
|
|
15 |
import cv2
|
16 |
|
17 |
from transformers import (
|
|
|
|
|
|
|
|
|
18 |
AutoProcessor,
|
19 |
Gemma3ForConditionalGeneration,
|
20 |
+
Qwen2VLForConditionalGeneration,
|
21 |
+
TextIteratorStreamer,
|
22 |
)
|
23 |
from transformers.image_utils import load_image
|
24 |
|
|
|
36 |
<div style="display: flex; align-items: center;">
|
37 |
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
|
38 |
<div style="width: 110px; height: 5px; background-color: #F0FFF0; border-radius: 2px; overflow: hidden;">
|
39 |
+
<div style="width: 100%; height: 100%; background-color: #00FF00; animation: loading 1.5s linear infinite;"></div>
|
40 |
</div>
|
41 |
</div>
|
42 |
<style>
|
|
|
47 |
</style>
|
48 |
'''
|
49 |
|
50 |
+
# Qwen2-VL (for optional image inference)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
MODEL_ID_VL = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
53 |
processor = AutoProcessor.from_pretrained(MODEL_ID_VL, trust_remote_code=True)
|
|
|
89 |
|
90 |
dtype = torch.float16 if device.type == "cuda" else torch.float32
|
91 |
|
92 |
+
|
93 |
+
# Gemma3 Model (default for text, image, & video inference)
|
94 |
|
95 |
gemma3_model_id = "google/gemma-3-4b-it" # alternative: google/gemma-3-12b-it
|
96 |
gemma3_model = Gemma3ForConditionalGeneration.from_pretrained(
|
|
|
99 |
gemma3_processor = AutoProcessor.from_pretrained(gemma3_model_id)
|
100 |
|
101 |
# VIDEO PROCESSING HELPER
|
102 |
+
|
103 |
def downsample_video(video_path):
|
104 |
vidcap = cv2.VideoCapture(video_path)
|
105 |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
|
|
133 |
):
|
134 |
text = input_dict["text"]
|
135 |
files = input_dict.get("files", [])
|
|
|
136 |
lower_text = text.lower().strip()
|
137 |
|
138 |
+
# ----- Qwen2-VL branch (triggered with @qwen2-vl) -----
|
139 |
+
if lower_text.startswith("@qwen2-vl"):
|
140 |
+
prompt_clean = re.sub(r"@qwen2-vl", "", text, flags=re.IGNORECASE).strip().strip('"')
|
|
|
141 |
if files:
|
|
|
142 |
images = [load_image(f) for f in files]
|
143 |
messages = [{
|
144 |
"role": "user",
|
|
|
147 |
{"type": "text", "text": prompt_clean},
|
148 |
]
|
149 |
}]
|
150 |
+
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
151 |
+
inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True).to("cuda")
|
152 |
else:
|
153 |
messages = [
|
154 |
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
|
155 |
{"role": "user", "content": [{"type": "text", "text": prompt_clean}]}
|
156 |
]
|
157 |
+
inputs = processor.apply_chat_template(
|
158 |
+
messages, add_generation_prompt=True, tokenize=True,
|
159 |
+
return_dict=True, return_tensors="pt"
|
160 |
+
).to("cuda", dtype=torch.float16)
|
161 |
+
streamer = TextIteratorStreamer(processor.tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
|
|
|
|
162 |
generation_kwargs = {
|
163 |
**inputs,
|
164 |
"streamer": streamer,
|
|
|
169 |
"top_k": top_k,
|
170 |
"repetition_penalty": repetition_penalty,
|
171 |
}
|
172 |
+
thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
|
173 |
thread.start()
|
174 |
buffer = ""
|
175 |
+
yield progress_bar_html("Processing with Qwen2VL")
|
176 |
for new_text in streamer:
|
177 |
buffer += new_text
|
178 |
+
buffer = buffer.replace("<|im_end|>", "")
|
179 |
time.sleep(0.01)
|
180 |
yield buffer
|
181 |
return
|
182 |
|
183 |
+
# ----- Default branch: Gemma3 (for text, image, & video inference) -----
|
184 |
+
if files:
|
185 |
+
# Check if any provided file is a video based on extension.
|
186 |
+
video_extensions = (".mp4", ".mov", ".avi", ".mkv", ".webm")
|
187 |
+
if any(str(f).lower().endswith(video_extensions) for f in files):
|
188 |
+
# Video inference branch.
|
189 |
+
prompt_clean = re.sub(r"@video-infer", "", text, flags=re.IGNORECASE).strip().strip('"')
|
190 |
video_path = files[0]
|
191 |
frames = downsample_video(video_path)
|
192 |
messages = [
|
193 |
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
|
194 |
{"role": "user", "content": [{"type": "text", "text": prompt_clean}]}
|
195 |
]
|
196 |
+
# Append each frame (with its timestamp) to the conversation.
|
197 |
for frame in frames:
|
198 |
image, timestamp = frame
|
199 |
image_path = f"video_frame_{uuid.uuid4().hex}.png"
|
200 |
image.save(image_path)
|
201 |
messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
|
202 |
messages[1]["content"].append({"type": "image", "url": image_path})
|
203 |
+
inputs = gemma3_processor.apply_chat_template(
|
204 |
+
messages, add_generation_prompt=True, tokenize=True,
|
205 |
+
return_dict=True, return_tensors="pt"
|
206 |
+
).to(gemma3_model.device, dtype=torch.bfloat16)
|
207 |
+
streamer = TextIteratorStreamer(gemma3_processor.tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
208 |
+
generation_kwargs = {
|
209 |
+
**inputs,
|
210 |
+
"streamer": streamer,
|
211 |
+
"max_new_tokens": max_new_tokens,
|
212 |
+
"do_sample": True,
|
213 |
+
"temperature": temperature,
|
214 |
+
"top_p": top_p,
|
215 |
+
"top_k": top_k,
|
216 |
+
"repetition_penalty": repetition_penalty,
|
217 |
+
}
|
218 |
+
thread = Thread(target=gemma3_model.generate, kwargs=generation_kwargs)
|
219 |
+
thread.start()
|
220 |
+
buffer = ""
|
221 |
+
yield progress_bar_html("Processing video with Gemma3")
|
222 |
+
for new_text in streamer:
|
223 |
+
buffer += new_text
|
224 |
+
time.sleep(0.01)
|
225 |
+
yield buffer
|
226 |
+
return
|
227 |
else:
|
228 |
+
# Image inference branch.
|
229 |
+
prompt_clean = re.sub(r"@gemma3", "", text, flags=re.IGNORECASE).strip().strip('"')
|
230 |
+
images = [load_image(f) for f in files]
|
231 |
+
messages = [{
|
232 |
+
"role": "user",
|
233 |
+
"content": [
|
234 |
+
*[{"type": "image", "image": image} for image in images],
|
235 |
+
{"type": "text", "text": prompt_clean},
|
236 |
+
]
|
237 |
+
}]
|
238 |
+
inputs = gemma3_processor.apply_chat_template(
|
239 |
+
messages, tokenize=True, add_generation_prompt=True,
|
240 |
+
return_dict=True, return_tensors="pt"
|
241 |
+
).to(gemma3_model.device, dtype=torch.bfloat16)
|
242 |
+
streamer = TextIteratorStreamer(gemma3_processor.tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
243 |
+
generation_kwargs = {
|
244 |
+
**inputs,
|
245 |
+
"streamer": streamer,
|
246 |
+
"max_new_tokens": max_new_tokens,
|
247 |
+
"do_sample": True,
|
248 |
+
"temperature": temperature,
|
249 |
+
"top_p": top_p,
|
250 |
+
"top_k": top_k,
|
251 |
+
"repetition_penalty": repetition_penalty,
|
252 |
+
}
|
253 |
+
thread = Thread(target=gemma3_model.generate, kwargs=generation_kwargs)
|
254 |
+
thread.start()
|
255 |
+
buffer = ""
|
256 |
+
yield progress_bar_html("Processing with Gemma3")
|
257 |
+
for new_text in streamer:
|
258 |
+
buffer += new_text
|
259 |
+
time.sleep(0.01)
|
260 |
+
yield buffer
|
261 |
+
return
|
262 |
+
else:
|
263 |
+
# Text-only inference branch.
|
264 |
+
messages = [
|
265 |
+
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
|
266 |
+
{"role": "user", "content": [{"type": "text", "text": text}]}
|
267 |
+
]
|
268 |
inputs = gemma3_processor.apply_chat_template(
|
269 |
messages, add_generation_prompt=True, tokenize=True,
|
270 |
return_dict=True, return_tensors="pt"
|
271 |
).to(gemma3_model.device, dtype=torch.bfloat16)
|
272 |
+
streamer = TextIteratorStreamer(gemma3_processor.tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
|
|
|
|
273 |
generation_kwargs = {
|
274 |
**inputs,
|
275 |
"streamer": streamer,
|
|
|
282 |
}
|
283 |
thread = Thread(target=gemma3_model.generate, kwargs=generation_kwargs)
|
284 |
thread.start()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
285 |
outputs = []
|
286 |
for new_text in streamer:
|
287 |
outputs.append(new_text)
|
288 |
yield "".join(outputs)
|
|
|
289 |
final_response = "".join(outputs)
|
290 |
yield final_response
|
291 |
|
292 |
+
|
293 |
+
# Gradio Interface
|
294 |
+
|
295 |
demo = gr.ChatInterface(
|
296 |
fn=generate,
|
297 |
additional_inputs=[
|
|
|
304 |
examples=[
|
305 |
[
|
306 |
{
|
307 |
+
"text": "Create a short story based on the images.",
|
308 |
"files": [
|
309 |
"examples/1111.jpg",
|
310 |
"examples/2222.jpg",
|
|
|
312 |
],
|
313 |
}
|
314 |
],
|
315 |
+
[{"text": "Explain the Image", "files": ["examples/3.jpg"]}],
|
316 |
+
[{"text": "Explain the content of the Advertisement", "files": ["examples/videoplayback.mp4"]}],
|
317 |
+
[{"text": "Which movie character is this?", "files": ["examples/9999.jpg"]}],
|
318 |
+
["Explain Critical Temperature of Substance"],
|
319 |
+
[{"text": "@qwen2-vl Transcription of the letter", "files": ["examples/222.png"]}],
|
320 |
+
[{"text": "Explain the content of the video in detail", "files": ["examples/breakfast.mp4"]}],
|
321 |
+
[{"text": "Describe the video", "files": ["examples/Missing.mp4"]}],
|
322 |
+
[{"text": "Explain what is happening in this video ?", "files": ["examples/oreo.mp4"]}],
|
323 |
+
[{"text": "Summarize the events in this video", "files": ["examples/sky.mp4"]}],
|
324 |
+
[{"text": "What is in the video ?", "files": ["examples/redlight.mp4"]}],
|
325 |
["Python Program for Array Rotation"],
|
326 |
+
["Explain Critical Temperature of Substance"]
|
327 |
],
|
328 |
cache_examples=False,
|
329 |
type="messages",
|
330 |
+
description="# **Gemma 3 Multimodal** \n`Use @qwen2-vl to switch to Qwen2-VL OCR for image inference and @video-infer for video input`",
|
331 |
fill_height=True,
|
332 |
+
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple", placeholder="Tag with @qwen2-vl for Qwen2-VL inference if needed."),
|
333 |
stop_btn="Stop Generation",
|
334 |
multimodal=True,
|
335 |
)
|