Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -12,7 +12,6 @@ import spaces
|
|
12 |
import torch
|
13 |
import numpy as np
|
14 |
from PIL import Image
|
15 |
-
import edge_tts
|
16 |
import cv2
|
17 |
|
18 |
from transformers import (
|
@@ -24,7 +23,6 @@ from transformers import (
|
|
24 |
Gemma3ForConditionalGeneration,
|
25 |
)
|
26 |
from transformers.image_utils import load_image
|
27 |
-
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
28 |
|
29 |
# Constants
|
30 |
MAX_MAX_NEW_TOKENS = 2048
|
@@ -51,7 +49,7 @@ def progress_bar_html(label: str) -> str:
|
|
51 |
</style>
|
52 |
'''
|
53 |
|
54 |
-
# TEXT
|
55 |
|
56 |
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
|
57 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
@@ -62,11 +60,6 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
62 |
)
|
63 |
model.eval()
|
64 |
|
65 |
-
TTS_VOICES = [
|
66 |
-
"en-US-JennyNeural", # @tts1
|
67 |
-
"en-US-GuyNeural", # @tts2
|
68 |
-
]
|
69 |
-
|
70 |
# MULTIMODAL (OCR) MODELS
|
71 |
|
72 |
MODEL_ID_VL = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
@@ -77,11 +70,6 @@ model_m = Qwen2VLForConditionalGeneration.from_pretrained(
|
|
77 |
torch_dtype=torch.float16
|
78 |
).to("cuda").eval()
|
79 |
|
80 |
-
async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
|
81 |
-
communicate = edge_tts.Communicate(text, voice)
|
82 |
-
await communicate.save(output_file)
|
83 |
-
return output_file
|
84 |
-
|
85 |
def clean_chat_history(chat_history):
|
86 |
cleaned = []
|
87 |
for msg in chat_history:
|
@@ -114,46 +102,9 @@ ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
|
114 |
|
115 |
dtype = torch.float16 if device.type == "cuda" else torch.float32
|
116 |
|
117 |
-
# STABLE DIFFUSION IMAGE GENERATION MODEL (Lightning 5 only)
|
118 |
-
|
119 |
-
if torch.cuda.is_available():
|
120 |
-
pipe = StableDiffusionXLPipeline.from_pretrained(
|
121 |
-
"SG161222/RealVisXL_V5.0_Lightning",
|
122 |
-
torch_dtype=dtype,
|
123 |
-
use_safetensors=True,
|
124 |
-
add_watermarker=False
|
125 |
-
).to(device)
|
126 |
-
pipe.text_encoder = pipe.text_encoder.half()
|
127 |
-
if ENABLE_CPU_OFFLOAD:
|
128 |
-
pipe.enable_model_cpu_offload()
|
129 |
-
else:
|
130 |
-
pipe.to(device)
|
131 |
-
print("Loaded RealVisXL_V5.0_Lightning on Device!")
|
132 |
-
if USE_TORCH_COMPILE:
|
133 |
-
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
134 |
-
print("Model RealVisXL_V5.0_Lightning Compiled!")
|
135 |
-
else:
|
136 |
-
pipe = StableDiffusionXLPipeline.from_pretrained(
|
137 |
-
"SG161222/RealVisXL_V5.0_Lightning",
|
138 |
-
torch_dtype=dtype,
|
139 |
-
use_safetensors=True,
|
140 |
-
add_watermarker=False
|
141 |
-
).to(device)
|
142 |
-
print("Running on CPU; model loaded in float32.")
|
143 |
-
|
144 |
-
DEFAULT_MODEL = "Lightning 5"
|
145 |
-
models = {
|
146 |
-
"Lightning 5": pipe
|
147 |
-
}
|
148 |
-
|
149 |
-
def save_image(img: Image.Image) -> str:
|
150 |
-
unique_name = str(uuid.uuid4()) + ".png"
|
151 |
-
img.save(unique_name)
|
152 |
-
return unique_name
|
153 |
-
|
154 |
# GEMMA3-4B MULTIMODAL MODEL
|
155 |
|
156 |
-
gemma3_model_id = "google/gemma-3-4b-it"
|
157 |
gemma3_model = Gemma3ForConditionalGeneration.from_pretrained(
|
158 |
gemma3_model_id, device_map="auto"
|
159 |
).eval()
|
@@ -196,91 +147,51 @@ def generate(
|
|
196 |
|
197 |
lower_text = text.lower().strip()
|
198 |
|
199 |
-
# IMAGE GENERATION BRANCH (Stable Diffusion model using @lightningv5)
|
200 |
-
if lower_text.startswith("@lightningv5"):
|
201 |
-
# Remove the model flag from the prompt.
|
202 |
-
prompt_clean = re.sub(r"@lightningv5", "", text, flags=re.IGNORECASE).strip().strip('"')
|
203 |
-
|
204 |
-
# Default parameters for single image generation.
|
205 |
-
width = 1024
|
206 |
-
height = 1024
|
207 |
-
guidance_scale = 6.0
|
208 |
-
seed_val = 0
|
209 |
-
randomize_seed_flag = True
|
210 |
-
|
211 |
-
seed_val = int(randomize_seed_fn(seed_val, randomize_seed_flag))
|
212 |
-
generator = torch.Generator(device=device).manual_seed(seed_val)
|
213 |
-
|
214 |
-
options = {
|
215 |
-
"prompt": prompt_clean,
|
216 |
-
"negative_prompt": default_negative,
|
217 |
-
"width": width,
|
218 |
-
"height": height,
|
219 |
-
"guidance_scale": guidance_scale,
|
220 |
-
"num_inference_steps": 30,
|
221 |
-
"generator": generator,
|
222 |
-
"num_images_per_prompt": 1,
|
223 |
-
"use_resolution_binning": True,
|
224 |
-
"output_type": "pil",
|
225 |
-
}
|
226 |
-
if device.type == "cuda":
|
227 |
-
torch.cuda.empty_cache()
|
228 |
-
|
229 |
-
yield progress_bar_html("Processing Image Generation")
|
230 |
-
images = models["Lightning 5"](**options).images
|
231 |
-
image_path = save_image(images[0])
|
232 |
-
yield gr.Image(image_path)
|
233 |
-
return
|
234 |
-
|
235 |
# GEMMA3-4B TEXT & MULTIMODAL (image) Branch
|
236 |
if lower_text.startswith("@gemma3"):
|
237 |
-
#
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
"role": "user",
|
248 |
-
"content": [
|
249 |
-
*[{"type": "image", "image": image} for image in images],
|
250 |
-
{"type": "text", "text": prompt_clean},
|
251 |
-
]
|
252 |
-
}]
|
253 |
-
else:
|
254 |
-
messages = [
|
255 |
-
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
|
256 |
-
{"role": "user", "content": [{"type": "text", "text": prompt_clean}]}
|
257 |
]
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
284 |
|
285 |
# GEMMA3-4B VIDEO Branch
|
286 |
if lower_text.startswith("@video-infer"):
|
@@ -333,20 +244,9 @@ def generate(
|
|
333 |
yield buffer
|
334 |
return
|
335 |
|
336 |
-
# Otherwise, handle text/chat
|
337 |
-
|
338 |
-
|
339 |
-
voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
|
340 |
-
|
341 |
-
if is_tts and voice_index:
|
342 |
-
voice = TTS_VOICES[voice_index - 1]
|
343 |
-
text = text.replace(f"{tts_prefix}{voice_index}", "").strip()
|
344 |
-
conversation = [{"role": "user", "content": text}]
|
345 |
-
else:
|
346 |
-
voice = None
|
347 |
-
text = text.replace(tts_prefix, "").strip()
|
348 |
-
conversation = clean_chat_history(chat_history)
|
349 |
-
conversation.append({"role": "user", "content": text})
|
350 |
|
351 |
if files:
|
352 |
images = [load_image(image) for image in files] if len(files) > 1 else [load_image(files[0])]
|
@@ -400,10 +300,6 @@ def generate(
|
|
400 |
final_response = "".join(outputs)
|
401 |
yield final_response
|
402 |
|
403 |
-
if is_tts and voice:
|
404 |
-
output_file = asyncio.run(text_to_speech(final_response, voice))
|
405 |
-
yield gr.Audio(output_file, autoplay=True)
|
406 |
-
|
407 |
demo = gr.ChatInterface(
|
408 |
fn=generate,
|
409 |
additional_inputs=[
|
@@ -422,16 +318,13 @@ demo = gr.ChatInterface(
|
|
422 |
[{"text": "@video-infer Explain what is happening in this video ?", "files": ["examples/oreo.mp4"]}],
|
423 |
[{"text": "@video-infer Summarize the events in this video", "files": ["examples/sky.mp4"]}],
|
424 |
[{"text": "@video-infer What is in the video ?", "files": ["examples/redlight.mp4"]}],
|
425 |
-
['@lightningv5 Chocolate dripping from a donut'],
|
426 |
["Python Program for Array Rotation"],
|
427 |
-
["@tts1 Who is Nikola Tesla, and why did he die?"],
|
428 |
-
["@tts2 What causes rainbows to form?"],
|
429 |
],
|
430 |
cache_examples=False,
|
431 |
type="messages",
|
432 |
description="# **Gemma 3 `@gemma3, @video-infer for video understanding`**",
|
433 |
fill_height=True,
|
434 |
-
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple", placeholder="@gemma3 for multimodal, @video-infer for video
|
435 |
stop_btn="Stop Generation",
|
436 |
multimodal=True,
|
437 |
)
|
|
|
12 |
import torch
|
13 |
import numpy as np
|
14 |
from PIL import Image
|
|
|
15 |
import cv2
|
16 |
|
17 |
from transformers import (
|
|
|
23 |
Gemma3ForConditionalGeneration,
|
24 |
)
|
25 |
from transformers.image_utils import load_image
|
|
|
26 |
|
27 |
# Constants
|
28 |
MAX_MAX_NEW_TOKENS = 2048
|
|
|
49 |
</style>
|
50 |
'''
|
51 |
|
52 |
+
# TEXT MODEL
|
53 |
|
54 |
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
|
55 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
|
60 |
)
|
61 |
model.eval()
|
62 |
|
|
|
|
|
|
|
|
|
|
|
63 |
# MULTIMODAL (OCR) MODELS
|
64 |
|
65 |
MODEL_ID_VL = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
|
|
70 |
torch_dtype=torch.float16
|
71 |
).to("cuda").eval()
|
72 |
|
|
|
|
|
|
|
|
|
|
|
73 |
def clean_chat_history(chat_history):
|
74 |
cleaned = []
|
75 |
for msg in chat_history:
|
|
|
102 |
|
103 |
dtype = torch.float16 if device.type == "cuda" else torch.float32
|
104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
# GEMMA3-4B MULTIMODAL MODEL
|
106 |
|
107 |
+
gemma3_model_id = "google/gemma-3-4b-it" # alternative: google/gemma-3-12b-it
|
108 |
gemma3_model = Gemma3ForConditionalGeneration.from_pretrained(
|
109 |
gemma3_model_id, device_map="auto"
|
110 |
).eval()
|
|
|
147 |
|
148 |
lower_text = text.lower().strip()
|
149 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
# GEMMA3-4B TEXT & MULTIMODAL (image) Branch
|
151 |
if lower_text.startswith("@gemma3"):
|
152 |
+
# Remove the gemma3 flag from the prompt.
|
153 |
+
prompt_clean = re.sub(r"@gemma3", "", text, flags=re.IGNORECASE).strip().strip('"')
|
154 |
+
if files:
|
155 |
+
# If image files are provided, load them.
|
156 |
+
images = [load_image(f) for f in files]
|
157 |
+
messages = [{
|
158 |
+
"role": "user",
|
159 |
+
"content": [
|
160 |
+
*[{"type": "image", "image": image} for image in images],
|
161 |
+
{"type": "text", "text": prompt_clean},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
]
|
163 |
+
}]
|
164 |
+
else:
|
165 |
+
messages = [
|
166 |
+
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
|
167 |
+
{"role": "user", "content": [{"type": "text", "text": prompt_clean}]}
|
168 |
+
]
|
169 |
+
inputs = gemma3_processor.apply_chat_template(
|
170 |
+
messages, add_generation_prompt=True, tokenize=True,
|
171 |
+
return_dict=True, return_tensors="pt"
|
172 |
+
).to(gemma3_model.device, dtype=torch.bfloat16)
|
173 |
+
streamer = TextIteratorStreamer(
|
174 |
+
gemma3_processor.tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True
|
175 |
+
)
|
176 |
+
generation_kwargs = {
|
177 |
+
**inputs,
|
178 |
+
"streamer": streamer,
|
179 |
+
"max_new_tokens": max_new_tokens,
|
180 |
+
"do_sample": True,
|
181 |
+
"temperature": temperature,
|
182 |
+
"top_p": top_p,
|
183 |
+
"top_k": top_k,
|
184 |
+
"repetition_penalty": repetition_penalty,
|
185 |
+
}
|
186 |
+
thread = Thread(target=gemma3_model.generate, kwargs=generation_kwargs)
|
187 |
+
thread.start()
|
188 |
+
buffer = ""
|
189 |
+
yield progress_bar_html("Processing with Gemma3")
|
190 |
+
for new_text in streamer:
|
191 |
+
buffer += new_text
|
192 |
+
time.sleep(0.01)
|
193 |
+
yield buffer
|
194 |
+
return
|
195 |
|
196 |
# GEMMA3-4B VIDEO Branch
|
197 |
if lower_text.startswith("@video-infer"):
|
|
|
244 |
yield buffer
|
245 |
return
|
246 |
|
247 |
+
# Otherwise, handle text/chat generation.
|
248 |
+
conversation = clean_chat_history(chat_history)
|
249 |
+
conversation.append({"role": "user", "content": text})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
|
251 |
if files:
|
252 |
images = [load_image(image) for image in files] if len(files) > 1 else [load_image(files[0])]
|
|
|
300 |
final_response = "".join(outputs)
|
301 |
yield final_response
|
302 |
|
|
|
|
|
|
|
|
|
303 |
demo = gr.ChatInterface(
|
304 |
fn=generate,
|
305 |
additional_inputs=[
|
|
|
318 |
[{"text": "@video-infer Explain what is happening in this video ?", "files": ["examples/oreo.mp4"]}],
|
319 |
[{"text": "@video-infer Summarize the events in this video", "files": ["examples/sky.mp4"]}],
|
320 |
[{"text": "@video-infer What is in the video ?", "files": ["examples/redlight.mp4"]}],
|
|
|
321 |
["Python Program for Array Rotation"],
|
|
|
|
|
322 |
],
|
323 |
cache_examples=False,
|
324 |
type="messages",
|
325 |
description="# **Gemma 3 `@gemma3, @video-infer for video understanding`**",
|
326 |
fill_height=True,
|
327 |
+
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple", placeholder="@gemma3 for multimodal, @video-infer for video !"),
|
328 |
stop_btn="Stop Generation",
|
329 |
multimodal=True,
|
330 |
)
|