Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,552 Bytes
e336179 b476d80 786abd0 b476d80 e336179 b476d80 786abd0 dc29382 786abd0 3f138ad 55a7e0e 786abd0 3b057f7 786abd0 3b057f7 786abd0 c4d5c0b 3b057f7 c4d5c0b 55a7e0e 3b057f7 55a7e0e a3c0180 786abd0 b476d80 c02a1b1 e336179 b476d80 e336179 786abd0 b476d80 c02a1b1 55a7e0e a3c0180 95bf8be a3c0180 e780483 55a7e0e e780483 a3c0180 3b057f7 a3c0180 786abd0 b55b5cd a3c0180 55a7e0e 2d99b82 a3c0180 2d99b82 55a7e0e 2d99b82 55a7e0e 2d99b82 55a7e0e 2d99b82 55a7e0e 2d99b82 55a7e0e 2d99b82 e780483 55a7e0e e780483 55a7e0e e780483 55a7e0e a3c0180 55a7e0e 4bfb84e 55a7e0e a3c0180 4bfb84e 786abd0 55a7e0e 786abd0 62e717d 55a7e0e 62e717d 55a7e0e 554bd83 55a7e0e 786abd0 55a7e0e 786abd0 55a7e0e 786abd0 e336179 b476d80 786abd0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
import os
import random
import uuid
import json
import time
import asyncio
import re
from threading import Thread
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import cv2
from transformers import (
AutoProcessor,
Gemma3ForConditionalGeneration,
Qwen2VLForConditionalGeneration,
TextIteratorStreamer,
)
from transformers.image_utils import load_image
# Constants
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
MAX_SEED = np.iinfo(np.int32).max
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Helper function to return a progress bar HTML snippet.
def progress_bar_html(label: str) -> str:
return f'''
<div style="display: flex; align-items: center;">
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
<div style="width: 110px; height: 5px; background-color: #F0FFF0; border-radius: 2px; overflow: hidden;">
<div style="width: 100%; height: 100%; background-color: #00FF00; animation: loading 1.5s linear infinite;"></div>
</div>
</div>
<style>
@keyframes loading {{
0% {{ transform: translateX(-100%); }}
100% {{ transform: translateX(100%); }}
}}
</style>
'''
# Qwen2-VL (for optional image inference)
MODEL_ID_VL = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
processor = AutoProcessor.from_pretrained(MODEL_ID_VL, trust_remote_code=True)
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
MODEL_ID_VL,
trust_remote_code=True,
torch_dtype=torch.float16
).to("cuda").eval()
def clean_chat_history(chat_history):
cleaned = []
for msg in chat_history:
if isinstance(msg, dict) and isinstance(msg.get("content"), str):
cleaned.append(msg)
return cleaned
bad_words = json.loads(os.getenv('BAD_WORDS', "[]"))
bad_words_negative = json.loads(os.getenv('BAD_WORDS_NEGATIVE', "[]"))
default_negative = os.getenv("default_negative", "")
def check_text(prompt, negative=""):
for i in bad_words:
if i in prompt:
return True
for i in bad_words_negative:
if i in negative:
return True
return False
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
dtype = torch.float16 if device.type == "cuda" else torch.float32
# Gemma3 Model (default for text, image, & video inference)
gemma3_model_id = "google/gemma-3-4b-it"
gemma3_model = Gemma3ForConditionalGeneration.from_pretrained(
gemma3_model_id, device_map="auto"
).eval()
gemma3_processor = AutoProcessor.from_pretrained(gemma3_model_id)
# VIDEO PROCESSING HELPER
def downsample_video(video_path):
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
frames = []
# Sample 10 evenly spaced frames.
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
# Convert from BGR to RGB and then to PIL Image.
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
# MAIN GENERATION FUNCTION
@spaces.GPU
def generate(
input_dict: dict,
chat_history: list[dict],
max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
):
text = input_dict["text"]
files = input_dict.get("files", [])
lower_text = text.lower().strip()
# ----- Qwen2-VL branch (triggered with @qwen2-vl) -----
if lower_text.startswith("@qwen2-vl"):
prompt_clean = re.sub(r"@qwen2-vl", "", text, flags=re.IGNORECASE).strip().strip('"')
if files:
images = [load_image(f) for f in files]
messages = [{
"role": "user",
"content": [
*[{"type": "image", "image": image} for image in images],
{"type": "text", "text": prompt_clean},
]
}]
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True).to("cuda")
else:
messages = [
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
{"role": "user", "content": [{"type": "text", "text": prompt_clean}]}
]
inputs = processor.apply_chat_template(
messages, add_generation_prompt=True, tokenize=True,
return_dict=True, return_tensors="pt"
).to("cuda", dtype=torch.float16)
streamer = TextIteratorStreamer(processor.tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
}
thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html("Processing with Qwen2VL")
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer
return
# ----- Default branch: Gemma3 (for text, image, & video inference) -----
if files:
# Check if any provided file is a video based on extension.
video_extensions = (".mp4", ".mov", ".avi", ".mkv", ".webm")
if any(str(f).lower().endswith(video_extensions) for f in files):
# Video inference branch.
prompt_clean = re.sub(r"@video-infer", "", text, flags=re.IGNORECASE).strip().strip('"')
video_path = files[0]
frames = downsample_video(video_path)
messages = [
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
{"role": "user", "content": [{"type": "text", "text": prompt_clean}]}
]
# Append each frame (with its timestamp) to the conversation.
for frame in frames:
image, timestamp = frame
image_path = f"video_frame_{uuid.uuid4().hex}.png"
image.save(image_path)
messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
messages[1]["content"].append({"type": "image", "url": image_path})
inputs = gemma3_processor.apply_chat_template(
messages, add_generation_prompt=True, tokenize=True,
return_dict=True, return_tensors="pt"
).to(gemma3_model.device, dtype=torch.bfloat16)
streamer = TextIteratorStreamer(gemma3_processor.tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
}
thread = Thread(target=gemma3_model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html("Processing video with Gemma3")
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer
return
else:
# Image inference branch.
prompt_clean = re.sub(r"@gemma3", "", text, flags=re.IGNORECASE).strip().strip('"')
images = [load_image(f) for f in files]
messages = [{
"role": "user",
"content": [
*[{"type": "image", "image": image} for image in images],
{"type": "text", "text": prompt_clean},
]
}]
inputs = gemma3_processor.apply_chat_template(
messages, tokenize=True, add_generation_prompt=True,
return_dict=True, return_tensors="pt"
).to(gemma3_model.device, dtype=torch.bfloat16)
streamer = TextIteratorStreamer(gemma3_processor.tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
}
thread = Thread(target=gemma3_model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html("Processing with Gemma3")
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer
return
else:
# Text-only inference branch.
messages = [
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
{"role": "user", "content": [{"type": "text", "text": text}]}
]
inputs = gemma3_processor.apply_chat_template(
messages, add_generation_prompt=True, tokenize=True,
return_dict=True, return_tensors="pt"
).to(gemma3_model.device, dtype=torch.bfloat16)
streamer = TextIteratorStreamer(gemma3_processor.tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
}
thread = Thread(target=gemma3_model.generate, kwargs=generation_kwargs)
thread.start()
outputs = []
for new_text in streamer:
outputs.append(new_text)
yield "".join(outputs)
final_response = "".join(outputs)
yield final_response
# Gradio Interface
demo = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
],
examples=[
[
{
"text": "Create a short story based on the images.",
"files": [
"examples/1111.jpg",
"examples/2222.jpg",
"examples/3333.jpg",
],
}
],
[{"text": "Explain the Image", "files": ["examples/3.jpg"]}],
[{"text": "Explain the content of the Advertisement", "files": ["examples/videoplayback.mp4"]}],
[{"text": "Which movie character is this?", "files": ["examples/9999.jpg"]}],
["Explain Critical Temperature of Substance"],
[{"text": "@qwen2-vl Transcription of the letter", "files": ["examples/222.png"]}],
[{"text": "Explain the content of the video in detail", "files": ["examples/breakfast.mp4"]}],
[{"text": "Describe the video", "files": ["examples/Missing.mp4"]}],
[{"text": "Explain what is happening in this video ?", "files": ["examples/oreo.mp4"]}],
[{"text": "Summarize the events in this video", "files": ["examples/sky.mp4"]}],
[{"text": "What is in the video ?", "files": ["examples/redlight.mp4"]}],
["Python Program for Array Rotation"],
["Explain Critical Temperature of Substance"]
],
cache_examples=False,
type="messages",
description="# **Gemma 3 Multimodal** \n`Use @qwen2-vl to switch to Qwen2-VL OCR for image inference and @video-infer for video input`",
fill_height=True,
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple", placeholder="Tag with @qwen2-vl for Qwen2-VL inference if needed."),
stop_btn="Stop Generation",
multimodal=True,
)
if __name__ == "__main__":
demo.queue(max_size=20).launch(share=True) |