Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,690 Bytes
e336179 b476d80 786abd0 b476d80 e336179 b476d80 786abd0 dc29382 786abd0 3f138ad 786abd0 3b057f7 786abd0 3b057f7 786abd0 c4d5c0b 3b057f7 c4d5c0b 3b057f7 a3c0180 786abd0 e336179 786abd0 3b057f7 a3c0180 786abd0 b476d80 c02a1b1 e336179 b476d80 e336179 786abd0 b476d80 c02a1b1 3b057f7 a3c0180 b476d80 786abd0 b476d80 c02a1b1 b476d80 b83fa58 b476d80 c02a1b1 b476d80 e336179 b476d80 2a821e6 b476d80 2a821e6 786abd0 2a821e6 76cd271 2a821e6 fe86637 786abd0 fe86637 53ac3ab fe86637 8f93c1b fe86637 8f93c1b c02a1b1 2a821e6 646f10f 2a821e6 fe86637 53ac3ab fe86637 3f564f5 2a821e6 734b76a 53ac3ab 2a821e6 734b76a 53ac3ab 2a821e6 b476d80 905e633 b476d80 905e633 e336179 a3c0180 e780483 a3c0180 3b057f7 a3c0180 786abd0 8e47763 b55b5cd a3c0180 e780483 786abd0 905e633 786abd0 905e633 786abd0 905e633 786abd0 905e633 3b057f7 5187002 905e633 786abd0 e780483 4bfb84e e780483 a3c0180 e780483 babe1cb e780483 babe1cb e780483 a3c0180 4bfb84e a3c0180 4bfb84e e780483 4bfb84e a3c0180 4bfb84e a3c0180 786abd0 3b057f7 786abd0 d549c86 dc7620f cca9546 babe1cb a977b3f c4d5c0b 88d547b 554bd83 786abd0 88d547b 786abd0 cca9546 786abd0 babe1cb 786abd0 e336179 b476d80 786abd0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 |
import os
import random
import uuid
import json
import time
import asyncio
import re
from threading import Thread
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import edge_tts
import cv2
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
TextIteratorStreamer,
Qwen2VLForConditionalGeneration,
AutoProcessor,
Gemma3ForConditionalGeneration,
)
from transformers.image_utils import load_image
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
# Constants
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
MAX_SEED = np.iinfo(np.int32).max
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Helper function to return a progress bar HTML snippet.
def progress_bar_html(label: str) -> str:
return f'''
<div style="display: flex; align-items: center;">
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
<div style="width: 110px; height: 5px; background-color: #F0FFF0; border-radius: 2px; overflow: hidden;">
<div style="width: 100%; height: 100%; background-color: #00FF00 ; animation: loading 1.5s linear infinite;"></div>
</div>
</div>
<style>
@keyframes loading {{
0% {{ transform: translateX(-100%); }}
100% {{ transform: translateX(100%); }}
}}
</style>
'''
# TEXT & TTS MODELS
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.bfloat16,
)
model.eval()
TTS_VOICES = [
"en-US-JennyNeural", # @tts1
"en-US-GuyNeural", # @tts2
]
# MULTIMODAL (OCR) MODELS
MODEL_ID_VL = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
processor = AutoProcessor.from_pretrained(MODEL_ID_VL, trust_remote_code=True)
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
MODEL_ID_VL,
trust_remote_code=True,
torch_dtype=torch.float16
).to("cuda").eval()
async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
communicate = edge_tts.Communicate(text, voice)
await communicate.save(output_file)
return output_file
def clean_chat_history(chat_history):
cleaned = []
for msg in chat_history:
if isinstance(msg, dict) and isinstance(msg.get("content"), str):
cleaned.append(msg)
return cleaned
bad_words = json.loads(os.getenv('BAD_WORDS', "[]"))
bad_words_negative = json.loads(os.getenv('BAD_WORDS_NEGATIVE', "[]"))
default_negative = os.getenv("default_negative", "")
def check_text(prompt, negative=""):
for i in bad_words:
if i in prompt:
return True
for i in bad_words_negative:
if i in negative:
return True
return False
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
dtype = torch.float16 if device.type == "cuda" else torch.float32
# STABLE DIFFUSION IMAGE GENERATION MODELS
if torch.cuda.is_available():
# Lightning 5 model
pipe = StableDiffusionXLPipeline.from_pretrained(
"SG161222/RealVisXL_V5.0_Lightning",
torch_dtype=dtype,
use_safetensors=True,
add_watermarker=False
).to(device)
pipe.text_encoder = pipe.text_encoder.half()
if ENABLE_CPU_OFFLOAD:
pipe.enable_model_cpu_offload()
else:
pipe.to(device)
print("Loaded RealVisXL_V5.0_Lightning on Device!")
if USE_TORCH_COMPILE:
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
print("Model RealVisXL_V5.0_Lightning Compiled!")
# Lightning 4 model
pipe2 = StableDiffusionXLPipeline.from_pretrained(
"SG161222/RealVisXL_V4.0_Lightning",
torch_dtype=dtype,
use_safetensors=True,
add_watermarker=False,
).to(device)
pipe2.text_encoder = pipe2.text_encoder.half()
if ENABLE_CPU_OFFLOAD:
pipe2.enable_model_cpu_offload()
else:
pipe2.to(device)
print("Loaded RealVisXL_V4.0 on Device!")
if USE_TORCH_COMPILE:
pipe2.unet = torch.compile(pipe2.unet, mode="reduce-overhead", fullgraph=True)
print("Model RealVisXL_V4.0 Compiled!")
# Turbo v3 model
pipe3 = StableDiffusionXLPipeline.from_pretrained(
"SG161222/RealVisXL_V3.0_Turbo",
torch_dtype=dtype,
use_safetensors=True,
add_watermarker=False,
).to(device)
pipe3.text_encoder = pipe3.text_encoder.half()
if ENABLE_CPU_OFFLOAD:
pipe3.enable_model_cpu_offload()
else:
pipe3.to(device)
print("Loaded RealVisXL_V3.0_Turbo on Device!")
if USE_TORCH_COMPILE:
pipe3.unet = torch.compile(pipe3.unet, mode="reduce-overhead", fullgraph=True)
print("Model RealVisXL_V3.0_Turbo Compiled!")
else:
pipe = StableDiffusionXLPipeline.from_pretrained(
"SG161222/RealVisXL_V5.0_Lightning",
torch_dtype=dtype,
use_safetensors=True,
add_watermarker=False
).to(device)
pipe2 = StableDiffusionXLPipeline.from_pretrained(
"SG161222/RealVisXL_V4.0_Lightning",
torch_dtype=dtype,
use_safetensors=True,
add_watermarker=False,
).to(device)
pipe3 = StableDiffusionXLPipeline.from_pretrained(
"SG161222/RealVisXL_V3.0_Turbo",
torch_dtype=dtype,
use_safetensors=True,
add_watermarker=False,
).to(device)
print("Running on CPU; models loaded in float32.")
DEFAULT_MODEL = "Lightning 5"
MODEL_CHOICES = [DEFAULT_MODEL, "Lightning 4", "Turbo v3"]
models = {
"Lightning 5": pipe,
"Lightning 4": pipe2,
"Turbo v3": pipe3
}
def save_image(img: Image.Image) -> str:
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name)
return unique_name
# GEMMA3-4B MULTIMODAL MODEL
gemma3_model_id = "google/gemma-3-4b-it"
gemma3_model = Gemma3ForConditionalGeneration.from_pretrained(
gemma3_model_id, device_map="auto"
).eval()
gemma3_processor = AutoProcessor.from_pretrained(gemma3_model_id)
# VIDEO PROCESSING HELPER
def downsample_video(video_path):
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
frames = []
# Sample 10 evenly spaced frames.
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
# Convert from BGR to RGB and then to PIL Image.
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
# MAIN GENERATION FUNCTION
@spaces.GPU
def generate(
input_dict: dict,
chat_history: list[dict],
max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
):
text = input_dict["text"]
files = input_dict.get("files", [])
lower_text = text.lower().strip()
# IMAGE GENERATION BRANCH (Stable Diffusion models)
if (lower_text.startswith("@lightningv5") or
lower_text.startswith("@lightningv4") or
lower_text.startswith("@turbov3")):
# Determine model choice based on flag.
model_choice = None
if "@lightningv5" in lower_text:
model_choice = "Lightning 5"
elif "@lightningv4" in lower_text:
model_choice = "Lightning 4"
elif "@turbov3" in lower_text:
model_choice = "Turbo v3"
# Remove the model flag from the prompt.
prompt_clean = re.sub(r"@lightningv5", "", text, flags=re.IGNORECASE)
prompt_clean = re.sub(r"@lightningv4", "", prompt_clean, flags=re.IGNORECASE)
prompt_clean = re.sub(r"@turbov3", "", prompt_clean, flags=re.IGNORECASE)
prompt_clean = prompt_clean.strip().strip('"')
# Default parameters for single image generation.
width = 1024
height = 1024
guidance_scale = 6.0
seed_val = 0
randomize_seed_flag = True
seed_val = int(randomize_seed_fn(seed_val, randomize_seed_flag))
generator = torch.Generator(device=device).manual_seed(seed_val)
options = {
"prompt": prompt_clean,
"negative_prompt": default_negative,
"width": width,
"height": height,
"guidance_scale": guidance_scale,
"num_inference_steps": 30,
"generator": generator,
"num_images_per_prompt": 1,
"use_resolution_binning": True,
"output_type": "pil",
}
if device.type == "cuda":
torch.cuda.empty_cache()
selected_pipe = models.get(model_choice, pipe)
yield progress_bar_html("Processing Image Generation")
images = selected_pipe(**options).images
image_path = save_image(images[0])
yield gr.Image(image_path)
return
# GEMMA3-4B TEXT & MULTIMODAL (image) Branch
if lower_text.startswith("@gemma3-4b"):
# If it is video, let the dedicated branch handle it.
if lower_text.startswith("@gemma3-4b-video"):
pass # video branch is handled below.
else:
# Remove the gemma3 flag from the prompt.
prompt_clean = re.sub(r"@gemma3-4b", "", text, flags=re.IGNORECASE).strip().strip('"')
if files:
# If image files are provided, load them.
images = [load_image(f) for f in files]
messages = [{
"role": "user",
"content": [
*[{"type": "image", "image": image} for image in images],
{"type": "text", "text": prompt_clean},
]
}]
else:
messages = [
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
{"role": "user", "content": [{"type": "text", "text": prompt_clean}]}
]
inputs = gemma3_processor.apply_chat_template(
messages, add_generation_prompt=True, tokenize=True,
return_dict=True, return_tensors="pt"
).to(gemma3_model.device, dtype=torch.bfloat16)
streamer = TextIteratorStreamer(
gemma3_processor.tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True
)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
}
thread = Thread(target=gemma3_model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html("Processing with Gemma3-4b")
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer
return
# NEW: GEMMA3-4B VIDEO Branch
if lower_text.startswith("@video-infer"):
# Remove the video flag from the prompt.
prompt_clean = re.sub(r"@video-infer", "", text, flags=re.IGNORECASE).strip().strip('"')
if files:
# Assume the first file is a video.
video_path = files[0]
frames = downsample_video(video_path)
messages = [
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
{"role": "user", "content": [{"type": "text", "text": prompt_clean}]}
]
# Append each frame as an image with a timestamp label.
for frame in frames:
image, timestamp = frame
# Save the frame image to a temporary unique filename.
image_path = f"video_frame_{uuid.uuid4().hex}.png"
image.save(image_path)
messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
messages[1]["content"].append({"type": "image", "url": image_path})
else:
messages = [
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
{"role": "user", "content": [{"type": "text", "text": prompt_clean}]}
]
inputs = gemma3_processor.apply_chat_template(
messages, add_generation_prompt=True, tokenize=True,
return_dict=True, return_tensors="pt"
).to(gemma3_model.device, dtype=torch.bfloat16)
streamer = TextIteratorStreamer(
gemma3_processor.tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True
)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
}
thread = Thread(target=gemma3_model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html("Processing with Gemma3-4b Video")
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer
return
# Otherwise, handle text/chat (and TTS) generation.
tts_prefix = "@tts"
is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3))
voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
if is_tts and voice_index:
voice = TTS_VOICES[voice_index - 1]
text = text.replace(f"{tts_prefix}{voice_index}", "").strip()
conversation = [{"role": "user", "content": text}]
else:
voice = None
text = text.replace(tts_prefix, "").strip()
conversation = clean_chat_history(chat_history)
conversation.append({"role": "user", "content": text})
if files:
images = [load_image(image) for image in files] if len(files) > 1 else [load_image(files[0])]
messages = [{
"role": "user",
"content": [
*[{"type": "image", "image": image} for image in images],
{"type": "text", "text": text},
]
}]
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True).to("cuda")
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html("Processing with Qwen2VL Ocr")
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer
else:
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
"input_ids": input_ids,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"top_p": top_p,
"top_k": top_k,
"temperature": temperature,
"num_beams": 1,
"repetition_penalty": repetition_penalty,
}
t = Thread(target=model.generate, kwargs=generation_kwargs)
t.start()
outputs = []
for new_text in streamer:
outputs.append(new_text)
yield "".join(outputs)
final_response = "".join(outputs)
yield final_response
if is_tts and voice:
output_file = asyncio.run(text_to_speech(final_response, voice))
yield gr.Audio(output_file, autoplay=True)
demo = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
],
examples=[
[{"text": "@gemma3-4b Explain the Image", "files": ["examples/3.jpg"]}],
[{"text": "@video-infer Explain the content of the Advertisement", "files": ["examples/videoplayback.mp4"]}],
[{"text": "@video-infer Explain the content of the video in detail", "files": ["examples/breakfast.mp4"]}],
[{"text": "@video-infer Describe the video", "files": ["examples/Missing.mp4"]}],
[{"text": "@video-infer Explain what is happening in this video ?", "files": ["examples/oreo.mp4"]}],
[{"text": "@video-infer Summarize the events in this video", "files": ["examples/sky.mp4"]}],
[{"text": "@video-infer What is in the video ?", "files": ["examples/redlight.mp4"]}],
[{"text": "@gemma3-4b Where do the major drought happen?", "files": ["examples/111.png"]}],
[{"text": "@gemma3-4b Transcription of the letter", "files": ["examples/222.png"]}],
['@lightningv5 Chocolate dripping from a donut'],
["Python Program for Array Rotation"],
["@tts1 Who is Nikola Tesla, and why did he die?"],
['@lightningv4 Cat holding a sign that says hello world'],
['@turbov3 Anime illustration of a wiener schnitzel'],
["@tts2 What causes rainbows to form?"],
],
cache_examples=False,
type="messages",
description="# **Gemma 3 `@gemma3-4b 'prompt..', @video-infer for video understanding!`**",
fill_height=True,
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple", placeholder="use the tags @gemma3-4b for multimodal, @video-infer for video, @lightningv5, @lightningv4, @turbov3 for image gen !"),
stop_btn="Stop Generation",
multimodal=True,
)
if __name__ == "__main__":
demo.queue(max_size=20).launch(share=True) |