File size: 3,041 Bytes
ad773e5
34ddc1f
 
b0f6b9b
6ac13b6
ad773e5
 
34ddc1f
ad773e5
 
 
 
 
 
34ddc1f
ad773e5
34ddc1f
 
 
 
0ba7801
34ddc1f
6ac13b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34ddc1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6938ff
34ddc1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ac13b6
 
 
34ddc1f
 
 
6ac13b6
 
34ddc1f
6ac13b6
0ba7801
34ddc1f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import gradio as gr
from openai import OpenAI
import os
from fpdf import FPDF
import docx

css = '''
.gradio-container{max-width: 890px !important}
h1{text-align:center}
footer {
    visibility: hidden
}
'''

ACCESS_TOKEN = os.getenv("HF_TOKEN")

client = OpenAI(
    base_url="https://api-inference.huggingface.co/v1/",
    api_key=ACCESS_TOKEN,
)

# Function to save generated text to a file
def save_file(content, filename, file_format):
    if file_format == "pdf":
        pdf = FPDF()
        pdf.add_page()
        pdf.set_auto_page_break(auto=True, margin=15)
        pdf.set_font("Arial", size=12)
        for line in content.split("\n"):
            pdf.multi_cell(0, 10, line)
        pdf.output(f"{filename}.pdf")
        return f"{filename}.pdf"
    elif file_format == "docx":
        doc = docx.Document()
        doc.add_paragraph(content)
        doc.save(f"{filename}.docx")
        return f"{filename}.docx"
    elif file_format == "txt":
        with open(f"{filename}.txt", "w") as f:
            f.write(content)
        return f"{filename}.txt"
    else:
        raise ValueError("Unsupported file format")

# Respond function with file saving
def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
    filename,
    file_format
):
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""

    for message in client.chat.completions.create(
        model="meta-llama/Meta-Llama-3.1-70B-Instruct",
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
        messages=messages,
    ):
        token = message.choices[0].delta.content
        response += token
        yield response
    
    # Save the final response to the specified file format
    saved_file = save_file(response, filename, file_format)
    yield response, history + [(message, response)], saved_file

# Gradio interface
demo = gr.ChatInterface(
    fn=respond,
    additional_inputs=[
        gr.Textbox(value="", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-P",
        ),
        gr.Textbox(value="output", label="Filename"),
        gr.Radio(["pdf", "docx", "txt"], label="File Format", value="pdf"),
    ],
    outputs=[
        gr.Textbox(label="Generated Text"),
        gr.State(value=[]),  # history
        gr.File(label="Download File"),
    ],
    css=css,
    theme="allenai/gradio-theme",
)

if __name__ == "__main__":
    demo.launch()