Update app.py
Browse files
app.py
CHANGED
@@ -4,20 +4,31 @@ import torch
|
|
4 |
from PIL import Image
|
5 |
from transformers import AutoProcessor, AutoModelForCausalLM
|
6 |
|
7 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
try:
|
9 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, check=True, shell=True)
|
|
|
10 |
except subprocess.CalledProcessError as e:
|
11 |
print(f"Error installing flash-attn: {e}")
|
12 |
print("Continuing without flash-attn.")
|
13 |
|
14 |
# Determine the device to use
|
15 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
16 |
|
17 |
# Load the base model and processor
|
18 |
try:
|
19 |
vision_language_model_base = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval()
|
20 |
vision_language_processor_base = AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True)
|
|
|
21 |
except Exception as e:
|
22 |
print(f"Error loading base model: {e}")
|
23 |
vision_language_model_base = None
|
@@ -27,6 +38,7 @@ except Exception as e:
|
|
27 |
try:
|
28 |
vision_language_model_large = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-large', trust_remote_code=True).to(device).eval()
|
29 |
vision_language_processor_large = AutoProcessor.from_pretrained('microsoft/Florence-2-large', trust_remote_code=True)
|
|
|
30 |
except Exception as e:
|
31 |
print(f"Error loading large model: {e}")
|
32 |
vision_language_model_large = None
|
|
|
4 |
from PIL import Image
|
5 |
from transformers import AutoProcessor, AutoModelForCausalLM
|
6 |
|
7 |
+
# Upgrade transformers to the latest version
|
8 |
+
try:
|
9 |
+
subprocess.run('pip install --upgrade transformers', check=True, shell=True)
|
10 |
+
print("Successfully upgraded transformers.")
|
11 |
+
except subprocess.CalledProcessError as e:
|
12 |
+
print(f"Error upgrading transformers: {e}")
|
13 |
+
print("Continuing with the current version, but this may cause issues.")
|
14 |
+
|
15 |
+
# Attempt to install flash-attn (optional, for performance)
|
16 |
try:
|
17 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, check=True, shell=True)
|
18 |
+
print("Successfully installed flash-attn.")
|
19 |
except subprocess.CalledProcessError as e:
|
20 |
print(f"Error installing flash-attn: {e}")
|
21 |
print("Continuing without flash-attn.")
|
22 |
|
23 |
# Determine the device to use
|
24 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
25 |
+
print(f"Using device: {device}")
|
26 |
|
27 |
# Load the base model and processor
|
28 |
try:
|
29 |
vision_language_model_base = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval()
|
30 |
vision_language_processor_base = AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True)
|
31 |
+
print("Base model and processor loaded successfully.")
|
32 |
except Exception as e:
|
33 |
print(f"Error loading base model: {e}")
|
34 |
vision_language_model_base = None
|
|
|
38 |
try:
|
39 |
vision_language_model_large = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-large', trust_remote_code=True).to(device).eval()
|
40 |
vision_language_processor_large = AutoProcessor.from_pretrained('microsoft/Florence-2-large', trust_remote_code=True)
|
41 |
+
print("Large model and processor loaded successfully.")
|
42 |
except Exception as e:
|
43 |
print(f"Error loading large model: {e}")
|
44 |
vision_language_model_large = None
|