|
|
|
|
|
import os |
|
import random |
|
import uuid |
|
|
|
import gradio as gr |
|
import numpy as np |
|
from PIL import Image |
|
import spaces |
|
import torch |
|
from diffusers import StableDiffusion3Pipeline, DPMSolverMultistepScheduler, AutoencoderKL |
|
from huggingface_hub import snapshot_download |
|
|
|
huggingface_token = os.getenv("HUGGINGFACE_TOKEN") |
|
|
|
model_path = snapshot_download( |
|
repo_id="stabilityai/stable-diffusion-3-medium", |
|
revision="refs/pr/26", |
|
repo_type="model", |
|
ignore_patterns=["*.md", "*.gitattributes"], |
|
local_dir="stable-diffusion-3-medium", |
|
token=huggingface_token, |
|
) |
|
|
|
DESCRIPTION = """# Stable Diffusion 3""" |
|
if not torch.cuda.is_available(): |
|
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo may not work on CPU.</p>" |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
CACHE_EXAMPLES = False |
|
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1536")) |
|
USE_TORCH_COMPILE = False |
|
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1" |
|
|
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
|
|
pipe = StableDiffusion3Pipeline.from_pretrained(model_path, torch_dtype=torch.float16) |
|
|
|
|
|
style_list = [ |
|
{ |
|
"name": "3840 x 2160", |
|
"prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", |
|
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly", |
|
}, |
|
{ |
|
"name": "2560 x 1440", |
|
"prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", |
|
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly", |
|
}, |
|
{ |
|
"name": "3D Model", |
|
"prompt": "professional 3d model {prompt}. octane render, highly detailed, volumetric, dramatic lighting", |
|
"negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting", |
|
}, |
|
] |
|
|
|
collage_style_list = [ |
|
{ |
|
"name": "B & W", |
|
"prompt": "black and white collage of {prompt}. monochromatic, timeless, classic, dramatic contrast", |
|
"negative_prompt": "colorful, vibrant, bright, flashy", |
|
}, |
|
{ |
|
"name": "Polaroid", |
|
"prompt": "collage of polaroid photos featuring {prompt}. vintage style, high contrast, nostalgic, instant film aesthetic", |
|
"negative_prompt": "digital, modern, low quality, blurry", |
|
}, |
|
{ |
|
"name": "Watercolor", |
|
"prompt": "watercolor collage of {prompt}. soft edges, translucent colors, painterly effects", |
|
"negative_prompt": "digital, sharp lines, solid colors", |
|
}, |
|
{ |
|
"name": "Cinematic", |
|
"prompt": "cinematic collage of {prompt}. film stills, movie posters, dramatic lighting", |
|
"negative_prompt": "static, lifeless, mundane", |
|
}, |
|
{ |
|
"name": "Nostalgic", |
|
"prompt": "nostalgic collage of {prompt}. retro imagery, vintage objects, sentimental journey", |
|
"negative_prompt": "contemporary, futuristic, forward-looking", |
|
}, |
|
{ |
|
"name": "Vintage", |
|
"prompt": "vintage collage of {prompt}. aged paper, sepia tones, retro imagery, antique vibes", |
|
"negative_prompt": "modern, contemporary, futuristic, high-tech", |
|
}, |
|
{ |
|
"name": "Scrapbook", |
|
"prompt": "scrapbook style collage of {prompt}. mixed media, hand-cut elements, textures, paper, stickers, doodles", |
|
"negative_prompt": "clean, digital, modern, low quality", |
|
}, |
|
{ |
|
"name": "NeoNGlow", |
|
"prompt": "neon glow collage of {prompt}. vibrant colors, glowing effects, futuristic vibes", |
|
"negative_prompt": "dull, muted colors, vintage, retro", |
|
}, |
|
{ |
|
"name": "Geometric", |
|
"prompt": "geometric collage of {prompt}. abstract shapes, colorful, sharp edges, modern design, high quality", |
|
"negative_prompt": "blurry, low quality, traditional, dull", |
|
}, |
|
{ |
|
"name": "Thematic", |
|
"prompt": "thematic collage of {prompt}. cohesive theme, well-organized, matching colors, creative layout", |
|
"negative_prompt": "random, messy, unorganized, clashing colors", |
|
}, |
|
{ |
|
"name": "Retro Pop", |
|
"prompt": "retro pop art collage of {prompt}. bold colors, comic book style, halftone dots, vintage ads", |
|
"negative_prompt": "subdued colors, minimalist, modern, subtle", |
|
}, |
|
{ |
|
"name": "No Style", |
|
"prompt": "{prompt}", |
|
"negative_prompt": "", |
|
}, |
|
] |
|
|
|
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list} |
|
collage_styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in collage_style_list} |
|
STYLE_NAMES = list(styles.keys()) |
|
COLLAGE_STYLE_NAMES = list(collage_styles.keys()) |
|
DEFAULT_STYLE_NAME = "3840 x 2160" |
|
DEFAULT_COLLAGE_STYLE_NAME = "B & W" |
|
|
|
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]: |
|
if style_name in styles: |
|
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME]) |
|
elif style_name in collage_styles: |
|
p, n = collage_styles.get(style_name, collage_styles[DEFAULT_COLLAGE_STYLE_NAME]) |
|
else: |
|
p, n = styles[DEFAULT_STYLE_NAME] |
|
|
|
if not negative: |
|
negative = "" |
|
return p.replace("{prompt}", positive), n + negative |
|
|
|
def save_image(img): |
|
unique_name = str(uuid.uuid4()) + ".png" |
|
img.save(unique_name) |
|
return unique_name |
|
|
|
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
return seed |
|
|
|
@spaces.GPU(enable_queue=True) |
|
def generate( |
|
prompt: str, |
|
negative_prompt: str = "", |
|
use_negative_prompt: bool = False, |
|
style: str = DEFAULT_STYLE_NAME, |
|
collage_style: str = DEFAULT_COLLAGE_STYLE_NAME, |
|
seed: int = 0, |
|
width: int = 1024, |
|
height: int = 1024, |
|
guidance_scale: float = 7, |
|
randomize_seed: bool = False, |
|
num_inference_steps=30, |
|
NUM_IMAGES_PER_PROMPT=1, |
|
use_resolution_binning: bool = True, |
|
progress=gr.Progress(track_tqdm=True), |
|
): |
|
pipe.to(device) |
|
seed = int(randomize_seed_fn(seed, randomize_seed)) |
|
generator = torch.Generator().manual_seed(seed) |
|
|
|
if collage_style != "No Style": |
|
prompt, negative_prompt = apply_style(collage_style, prompt, negative_prompt) |
|
else: |
|
prompt, negative_prompt = apply_style(style, prompt, negative_prompt) |
|
|
|
if not use_negative_prompt: |
|
negative_prompt = None |
|
|
|
output = pipe( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
width=width, |
|
height=height, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
generator=generator, |
|
num_images_per_prompt=NUM_IMAGES_PER_PROMPT, |
|
output_type="pil", |
|
).images |
|
|
|
return output |
|
|
|
examples = [ |
|
"A red sofa on top of a white building.", |
|
"A cardboard which is large and sits on a theater stage.", |
|
"A painting of an astronaut riding a pig wearing a tutu holding a pink umbrella.", |
|
"Studio photograph closeup of a chameleon over a black background.", |
|
"Closeup portrait photo of beautiful goth woman, makeup.", |
|
"A living room, bright modern Scandinavian style house, large windows.", |
|
"Portrait photograph of an anthropomorphic tortoise seated on a New York City subway train.", |
|
"Batman, cute modern Disney style, Pixar 3d portrait, ultra detailed, gorgeous, 3d zbrush, trending on dribbble, 8k render.", |
|
"Cinnamon bun on the plate, watercolor painting, detailed, brush strokes, light palette, light, cozy.", |
|
"A lion, colorful, low-poly, cyan and orange eyes, poly-hd, 3d, low-poly game art, polygon mesh, jagged, blocky, wireframe edges, centered composition.", |
|
"Long exposure photo of Tokyo street, blurred motion, streaks of light, surreal, dreamy, ghosting effect, highly detailed.", |
|
"A glamorous digital magazine photoshoot, a fashionable model wearing avant-garde clothing, set in a futuristic cyberpunk roof-top environment, with a neon-lit city background, intricate high fashion details, backlit by vibrant city glow, Vogue fashion photography.", |
|
"Masterpiece, best quality, girl, collarbone, wavy hair, looking at viewer, blurry foreground, upper body, necklace, contemporary, plain pants, intricate, print, pattern, ponytail, freckles, red hair, dappled sunlight, smile, happy." |
|
] |
|
|
|
css = ''' |
|
.gradio-container{max-width: 1000px !important} |
|
h1{text-align:center} |
|
''' |
|
with gr.Blocks(css=css) as demo: |
|
with gr.Row(): |
|
with gr.Column(): |
|
gr.HTML( |
|
""" |
|
<h1 style='text-align: center'> |
|
Stable Diffusion 3 Medium |
|
</h1> |
|
""" |
|
) |
|
gr.HTML( |
|
""" |
|
|
|
""" |
|
) |
|
with gr.Group(): |
|
with gr.Row(): |
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt", |
|
container=False, |
|
) |
|
run_button = gr.Button("Run", scale=0) |
|
result = gr.Gallery(label="Result", elem_id="gallery", show_label=False) |
|
with gr.Accordion("Advanced options", open=False): |
|
with gr.Row(): |
|
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True) |
|
negative_prompt = gr.Text( |
|
label="Negative prompt", |
|
max_lines=1, |
|
value = "deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, NSFW", |
|
visible=True, |
|
) |
|
style_selection = gr.Dropdown( |
|
label="Style", |
|
choices=STYLE_NAMES, |
|
value=DEFAULT_STYLE_NAME, |
|
) |
|
collage_style_selection = gr.Dropdown( |
|
label="Collage Template", |
|
choices=COLLAGE_STYLE_NAMES, |
|
value=DEFAULT_COLLAGE_STYLE_NAME, |
|
) |
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
steps = gr.Slider( |
|
label="Steps", |
|
minimum=0, |
|
maximum=60, |
|
step=1, |
|
value=30, |
|
) |
|
number_image = gr.Slider( |
|
label="Number of Image", |
|
minimum=1, |
|
maximum=4, |
|
step=1, |
|
value=2, |
|
) |
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
with gr.Row(visible=True): |
|
width = gr.Slider( |
|
label="Width", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
) |
|
height = gr.Slider( |
|
label="Height", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
) |
|
with gr.Row(): |
|
guidance_scale = gr.Slider( |
|
label="Guidance Scale", |
|
minimum=0.1, |
|
maximum=10, |
|
step=0.1, |
|
value=7.0, |
|
) |
|
|
|
gr.Examples( |
|
examples=examples, |
|
inputs=prompt, |
|
outputs=[result], |
|
fn=generate, |
|
cache_examples=CACHE_EXAMPLES, |
|
) |
|
|
|
use_negative_prompt.change( |
|
fn=lambda x: gr.update(visible=x), |
|
inputs=use_negative_prompt, |
|
outputs=negative_prompt, |
|
api_name=False, |
|
) |
|
|
|
gr.on( |
|
triggers=[ |
|
prompt.submit, |
|
negative_prompt.submit, |
|
run_button.click, |
|
], |
|
fn=generate, |
|
inputs=[ |
|
prompt, |
|
negative_prompt, |
|
use_negative_prompt, |
|
style_selection, |
|
collage_style_selection, |
|
seed, |
|
width, |
|
height, |
|
guidance_scale, |
|
randomize_seed, |
|
steps, |
|
number_image, |
|
], |
|
outputs=[result], |
|
api_name="run", |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.queue().launch() |