|
import os |
|
import random |
|
import uuid |
|
|
|
import gradio as gr |
|
import numpy as np |
|
from PIL import Image |
|
import spaces |
|
import torch |
|
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler, StableDiffusion3Img2ImgPipeline |
|
from huggingface_hub import snapshot_download |
|
|
|
huggingface_token = os.getenv("HUGGINGFACE_TOKEN") |
|
|
|
MODEL_ID = os.getenv("MODEL_REPO") |
|
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096")) |
|
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1" |
|
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1" |
|
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1")) |
|
|
|
|
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
pipe = StableDiffusionXLPipeline.from_pretrained( |
|
MODEL_ID, |
|
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, |
|
use_safetensors=True, |
|
add_watermarker=False, |
|
).to(device) |
|
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) |
|
|
|
|
|
if USE_TORCH_COMPILE: |
|
pipe.compile() |
|
|
|
|
|
if ENABLE_CPU_OFFLOAD: |
|
pipe.enable_model_cpu_offload() |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
CACHE_EXAMPLES = False |
|
|
|
DESCRIPTION = """# Stable Diffusion XL""" |
|
if not torch.cuda.is_available(): |
|
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo may not work on CPU.</p>" |
|
|
|
def load_pipeline(pipeline_type): |
|
if pipeline_type == "text2img": |
|
return pipe |
|
elif pipeline_type == "img2img": |
|
return StableDiffusion3Img2ImgPipeline.from_pretrained(MODEL_ID, torch_dtype=torch.float16) |
|
|
|
def save_image(img): |
|
unique_name = str(uuid.uuid4()) + ".png" |
|
img.save(unique_name) |
|
return unique_name |
|
|
|
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
return seed |
|
|
|
@spaces.GPU |
|
def generate( |
|
prompt: str, |
|
negative_prompt: str = "", |
|
use_negative_prompt: bool = False, |
|
seed: int = 0, |
|
width: int = 1024, |
|
height: int = 1024, |
|
guidance_scale: float = 7, |
|
randomize_seed: bool = False, |
|
num_inference_steps=30, |
|
NUM_IMAGES_PER_PROMPT=1, |
|
use_resolution_binning: bool = True, |
|
progress=gr.Progress(track_tqdm=True), |
|
): |
|
pipe = load_pipeline("text2img") |
|
pipe.to(device) |
|
seed = int(randomize_seed_fn(seed, randomize_seed)) |
|
generator = torch.Generator().manual_seed(seed) |
|
|
|
if not use_negative_prompt: |
|
negative_prompt = None |
|
|
|
output = pipe( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
width=width, |
|
height=height, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
generator=generator, |
|
num_images_per_prompt=NUM_IMAGES_PER_PROMPT, |
|
output_type="battery", |
|
).images |
|
|
|
return output |
|
|
|
@spaces.GPU |
|
def img2img_generate( |
|
prompt: str, |
|
init_image: gr.Image, |
|
negative_prompt: str = "", |
|
use_negative_prompt: bool = False, |
|
seed: int = 0, |
|
guidance_scale: float = 7, |
|
randomize_seed: bool = False, |
|
num_inference_steps=30, |
|
strength: float = 0.8, |
|
NUM_IMAGES_PER_PROMPT=1, |
|
use_resolution_binning: bool = True, |
|
progress=gr.Progress(track_tqdm=True), |
|
): |
|
pipe = load_pipeline("img2img") |
|
pipe.to(device) |
|
seed = int(randomize_seed_fn(seed, randomize_seed)) |
|
generator = torch.Generator().manual_seed(seed) |
|
|
|
if not use_negative_prompt: |
|
negative_prompt = None |
|
|
|
init_image = init_image.resize((768, 768)) |
|
|
|
output = pipe( |
|
prompt=prompt, |
|
image=init_image, |
|
negative_prompt=negative_prompt, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
generator=generator, |
|
strength=strength, |
|
num_images_per_prompt=NUM_IMAGES_PER_PROMPT, |
|
output_type="battery", |
|
).images |
|
|
|
return output |
|
|
|
examples = [ |
|
"A cardboard with text 'New York' which is large and sits on a theater stage.", |
|
"A red sofa on top of a white building.", |
|
"A painting of an astronaut riding a pig wearing a tutu holding a pink umbrella.", |
|
"Studio photograph closeup of a chameleon over a black background.", |
|
"Closeup portrait photo of beautiful goth woman, makeup.", |
|
"A living room, bright modern Scandinavian style house, large windows.", |
|
"Portrait photograph of an anthropomorphic tortoise seated on a New York City subway train.", |
|
"Batman, cute modern Disney style, Pixar 3d portrait, ultra detailed, gorgeous, 3d zbrush, trending on dribbble, 8k render.", |
|
"Cinnamon bun on the plate, watercolor painting, detailed, brush strokes, light palette, light, cozy.", |
|
"A lion, colorful, low-poly, cyan and orange eyes, poly-hd, 3d, low-poly game art, polygon mesh, jagged, blocky, wireframe edges, centered composition.", |
|
"Long exposure photo of Tokyo street, blurred motion, streaks of light, surreal, dreamy, ghosting effect, highly detailed.", |
|
"A glamorous digital magazine photoshoot, a fashionable model wearing avant-garde clothing, set in a futuristic cyberpunk roof-top environment, with a neon-lit city background, intricate high fashion details, backlit by vibrant city glow, Vogue fashion photography.", |
|
"Masterpiece, best quality, girl, collarbone, wavy hair, looking at viewer, blurry foreground, upper body, necklace, contemporary, plain pants, intricate, print, pattern, ponytail, freckles, red hair, dappled sunlight, smile, happy." |
|
] |
|
|
|
css = ''' |
|
.gradio-container{max-width: 1000px !important} |
|
h1{text-align:center} |
|
''' |
|
with gr.Blocks(css=css, theme="snehilsanyal/scikit-learn") as demo: |
|
with gr.Row(): |
|
with gr.Column(): |
|
gr.HTML( |
|
""" |
|
<h1 style='text-align: center'> |
|
Stable Diffusion XL |
|
</h1> |
|
""" |
|
) |
|
gr.HTML( |
|
""" |
|
|
|
""" |
|
) |
|
|
|
with gr.Tabs(): |
|
with gr.TabItem("Text to Image"): |
|
with gr.Group(): |
|
with gr.Row(): |
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt", |
|
container=False, |
|
) |
|
run_button = gr.Button("Run", scale=0) |
|
result = gr.Gallery(label="Result", elem_id="gallery", show_label=False) |
|
with gr.Accordion("Advanced options", open=False): |
|
with gr.Row(): |
|
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True) |
|
negative_prompt = gr.Text( |
|
label="Negative prompt", |
|
max_lines=1, |
|
value="deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, NSFW", |
|
visible=True, |
|
) |
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
|
|
steps = gr.Slider( |
|
label="Steps", |
|
minimum=0, |
|
maximum=60, |
|
step=1, |
|
value=25, |
|
) |
|
number_image = gr.Slider( |
|
label="Number of Images", |
|
minimum=1, |
|
maximum=4, |
|
step=1, |
|
value=2, |
|
) |
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
with gr.Row(visible=True): |
|
width = gr.Slider( |
|
label="Width", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
) |
|
height = gr.Slider( |
|
label="Height", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
) |
|
with gr.Row(): |
|
guidance_scale = gr.Slider( |
|
label="Guidance Scale", |
|
minimum=0.1, |
|
maximum=10, |
|
step=0.1, |
|
value=7.0, |
|
) |
|
|
|
gr.Examples( |
|
examples=examples, |
|
inputs=prompt, |
|
outputs=[result], |
|
fn=generate, |
|
cache_examples=CACHE_EXAMPLES, |
|
) |
|
|
|
use_negative_prompt.change( |
|
fn=lambda x: gr.update(visible=x), |
|
inputs=use_negative_prompt, |
|
outputs=negative_prompt, |
|
api_name=False, |
|
) |
|
|
|
gr.on( |
|
triggers=[ |
|
prompt.submit, |
|
negative_prompt.submit, |
|
run_button.click, |
|
], |
|
fn=generate, |
|
inputs=[ |
|
prompt, |
|
negative_prompt, |
|
use_negative_prompt, |
|
seed, |
|
width, |
|
height, |
|
guidance_scale, |
|
randomize_seed, |
|
steps, |
|
number_image, |
|
], |
|
outputs=[result], |
|
api_name="run", |
|
) |
|
with gr.TabItem("Image to Image"): |
|
with gr.Group(): |
|
with gr.Row(equal_height=True): |
|
with gr.Column(scale=1): |
|
img2img_prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt", |
|
container=False, |
|
) |
|
init_image = gr.Image(label="Input Image", type="pil") |
|
with gr.Row(): |
|
img2img_run_button = gr.Button("Generate", variant="primary") |
|
with gr.Column(scale=1): |
|
img2img_output = gr.Gallery(label="Result", elem_id="gallery") |
|
with gr.Accordion("Advanced options", open=False): |
|
with gr.Row(): |
|
img2img_use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True) |
|
img2img_negative_prompt = gr.Text( |
|
label="Negative prompt", |
|
max_lines=1, |
|
value="deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, NSFW", |
|
visible=True, |
|
) |
|
img2img_seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
img2img_steps = gr.Slider( |
|
label="Steps", |
|
minimum=0, |
|
maximum=60, |
|
step=1, |
|
value=25, |
|
) |
|
img2img_number_image = gr.Slider( |
|
label="Number of Images", |
|
minimum=1, |
|
maximum=4, |
|
step=1, |
|
value=2, |
|
) |
|
img2img_randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
with gr.Row(): |
|
img2img_guidance_scale = gr.Slider( |
|
label="Guidance Scale", |
|
minimum=0.1, |
|
maximum=10, |
|
step=0.1, |
|
value=7.0, |
|
) |
|
strength = gr.Slider(label="Img2Img Strength", minimum=0.0, maximum=1.0, step=0.01, value=0.8) |
|
|
|
img2img_use_negative_prompt.change( |
|
fn=lambda x: gr.update(visible=x), |
|
inputs=img2img_use_negative_prompt, |
|
outputs=img2img_negative_prompt, |
|
api_name=False, |
|
) |
|
|
|
gr.on( |
|
triggers=[ |
|
img2img_prompt.submit, |
|
img2img_negative_prompt.submit, |
|
img2img_run_button.click, |
|
], |
|
fn=img2img_generate, |
|
inputs=[ |
|
img2img_prompt, |
|
init_image, |
|
img2img_negative_prompt, |
|
img2img_use_negative_prompt, |
|
img2img_seed, |
|
img2img_guidance_scale, |
|
img2img_randomize_seed, |
|
img2img_steps, |
|
strength, |
|
img2img_number_image, |
|
], |
|
outputs=[img2img_output], |
|
api_name="img2img_run", |
|
) |
|
if __name__ == "__main__": |
|
demo.queue().launch(show_api=False, debug=False) |