|
import gradio as gr |
|
import subprocess |
|
import torch |
|
from PIL import Image |
|
from transformers import AutoProcessor, AutoModelForCausalLM |
|
|
|
|
|
try: |
|
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, check=True, shell=True) |
|
except subprocess.CalledProcessError as e: |
|
print(f"Error installing flash-attn: {e}") |
|
print("Continuing without flash-attn.") |
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
try: |
|
vision_language_model_base = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval() |
|
vision_language_processor_base = AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True) |
|
except Exception as e: |
|
print(f"Error loading base model: {e}") |
|
vision_language_model_base = None |
|
vision_language_processor_base = None |
|
|
|
|
|
try: |
|
vision_language_model_large = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-large', trust_remote_code=True).to(device).eval() |
|
vision_language_processor_large = AutoProcessor.from_pretrained('microsoft/Florence-2-large', trust_remote_code=True) |
|
except Exception as e: |
|
print(f"Error loading large model: {e}") |
|
vision_language_model_large = None |
|
vision_language_processor_large = None |
|
|
|
def describe_image(uploaded_image, model_choice): |
|
""" |
|
Generates a detailed description of the input image using the selected model. |
|
|
|
Args: |
|
uploaded_image (PIL.Image.Image): The image to describe. |
|
model_choice (str): The model to use, either "Base" or "Large". |
|
|
|
Returns: |
|
str: A detailed textual description of the image or an error message. |
|
""" |
|
if uploaded_image is None: |
|
return "Please upload an image." |
|
|
|
if model_choice == "Base": |
|
if vision_language_model_base is None: |
|
return "Base model failed to load." |
|
model = vision_language_model_base |
|
processor = vision_language_processor_base |
|
elif model_choice == "Large": |
|
if vision_language_model_large is None: |
|
return "Large model failed to load." |
|
model = vision_language_model_large |
|
processor = vision_language_processor_large |
|
else: |
|
return "Invalid model choice." |
|
|
|
if not isinstance(uploaded_image, Image.Image): |
|
uploaded_image = Image.fromarray(uploaded_image) |
|
|
|
inputs = processor(text="<MORE_DETAILED_CAPTION>", images=uploaded_image, return_tensors="pt").to(device) |
|
with torch.no_grad(): |
|
generated_ids = model.generate( |
|
input_ids=inputs["input_ids"], |
|
pixel_values=inputs["pixel_values"], |
|
max_new_tokens=1024, |
|
early_stopping=False, |
|
do_sample=False, |
|
num_beams=3, |
|
) |
|
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] |
|
processed_description = processor.post_process_generation( |
|
generated_text, |
|
task="<MORE_DETAILED_CAPTION>", |
|
image_size=(uploaded_image.width, uploaded_image.height) |
|
) |
|
image_description = processed_description["<MORE_DETAILED_CAPTION>"] |
|
print("\nImage description generated!:", image_description) |
|
return image_description |
|
|
|
|
|
description = "Select the model to use for generating the image description. 'Base' is smaller and faster, while 'Large' is more accurate but slower." |
|
if device == "cpu": |
|
description += " Note: Running on CPU, which may be slow for large models." |
|
|
|
|
|
image_description_interface = gr.Interface( |
|
fn=describe_image, |
|
inputs=[ |
|
gr.Image(label="Upload Image", type="pil"), |
|
gr.Radio(["Base", "Large"], label="Model Choice", value="Base") |
|
], |
|
outputs=gr.Textbox(label="Generated Caption", lines=4, show_copy_button=True), |
|
live=False, |
|
title="# **[Florence-2 Models Image Captions](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**", |
|
theme=="bethecloud/storj_theme", |
|
description=description |
|
) |
|
|
|
|
|
image_description_interface.launch(debug=True, ssr_mode=False) |