Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -33,63 +33,81 @@ trigger_word = "Super Realism" # Leave blank if not used
|
|
33 |
pipe.load_lora_weights(lora_repo)
|
34 |
pipe.to("cuda")
|
35 |
|
36 |
-
# Define style options
|
37 |
style_list = [
|
38 |
{
|
39 |
"name": "3840 x 2160",
|
40 |
"prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
|
|
|
41 |
},
|
42 |
{
|
43 |
"name": "2560 x 1440",
|
44 |
"prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
|
|
|
45 |
},
|
46 |
{
|
47 |
"name": "HD+",
|
48 |
"prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
|
|
|
49 |
},
|
50 |
{
|
51 |
"name": "Style Zero",
|
52 |
"prompt": "{prompt}",
|
|
|
53 |
},
|
54 |
]
|
55 |
|
56 |
-
styles = {k["name"]: k["prompt"] for k in style_list}
|
57 |
DEFAULT_STYLE_NAME = "3840 x 2160"
|
58 |
STYLE_NAMES = list(styles.keys())
|
59 |
|
60 |
# Apply selected style to the prompt
|
61 |
-
def apply_style(style_name: str, positive: str) -> str:
|
62 |
-
|
|
|
63 |
|
64 |
# Image generation function with Spaces GPU support
|
65 |
@spaces.GPU(duration=60, enable_queue=True)
|
66 |
def generate(
|
67 |
prompt: str,
|
|
|
|
|
68 |
seed: int = 0,
|
69 |
width: int = 1024,
|
70 |
height: int = 1024,
|
71 |
guidance_scale: float = 3,
|
72 |
randomize_seed: bool = False,
|
73 |
style_name: str = DEFAULT_STYLE_NAME,
|
|
|
74 |
progress=gr.Progress(track_tqdm=True),
|
75 |
):
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
if trigger_word:
|
80 |
positive_prompt = f"{trigger_word} {positive_prompt}"
|
81 |
-
|
|
|
|
|
|
|
82 |
images = pipe(
|
83 |
prompt=positive_prompt,
|
|
|
84 |
width=width,
|
85 |
height=height,
|
86 |
guidance_scale=guidance_scale,
|
87 |
-
num_inference_steps=
|
88 |
num_images_per_prompt=1,
|
|
|
89 |
output_type="pil",
|
90 |
).images
|
91 |
image_paths = [save_image(img) for img in images]
|
92 |
-
print(image_paths)
|
93 |
return image_paths, seed
|
94 |
|
95 |
# Example prompts
|
@@ -122,81 +140,87 @@ footer {
|
|
122 |
'''
|
123 |
|
124 |
# Gradio interface
|
125 |
-
with gr.Blocks(css=css
|
126 |
with gr.Row():
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
)
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
maximum=MAX_SEED,
|
142 |
-
step=1,
|
143 |
-
value=0,
|
144 |
-
visible=True
|
145 |
-
)
|
146 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
147 |
-
|
148 |
-
with gr.Row(visible=True):
|
149 |
-
width = gr.Slider(
|
150 |
-
label="Width",
|
151 |
-
minimum=512,
|
152 |
-
maximum=2048,
|
153 |
-
step=64,
|
154 |
-
value=1280,
|
155 |
-
)
|
156 |
-
height = gr.Slider(
|
157 |
-
label="Height",
|
158 |
-
minimum=512,
|
159 |
-
maximum=2048,
|
160 |
-
step=64,
|
161 |
-
value=832,
|
162 |
-
)
|
163 |
-
|
164 |
-
with gr.Row():
|
165 |
-
guidance_scale = gr.Slider(
|
166 |
-
label="Guidance Scale",
|
167 |
-
minimum=0.1,
|
168 |
-
maximum=20.0,
|
169 |
-
step=0.1,
|
170 |
-
value=3.0,
|
171 |
-
)
|
172 |
-
num_inference_steps = gr.Slider(
|
173 |
-
label="Number of inference steps",
|
174 |
-
minimum=1,
|
175 |
-
maximum=40,
|
176 |
-
step=1,
|
177 |
-
value=30,
|
178 |
-
)
|
179 |
-
|
180 |
-
style_selection = gr.Radio(
|
181 |
-
show_label=True,
|
182 |
-
container=True,
|
183 |
-
interactive=True,
|
184 |
-
choices=STYLE_NAMES,
|
185 |
-
value=DEFAULT_STYLE_NAME,
|
186 |
-
label="Quality Style",
|
187 |
-
)
|
188 |
-
|
189 |
-
with gr.Column(scale=2):
|
190 |
-
result = gr.Gallery(label="Result", columns=1, show_label=False)
|
191 |
-
|
192 |
-
gr.Examples(
|
193 |
-
examples=examples,
|
194 |
-
inputs=prompt,
|
195 |
-
outputs=[result, seed],
|
196 |
-
fn=generate,
|
197 |
-
cache_examples=False,
|
198 |
)
|
199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
gr.on(
|
201 |
triggers=[
|
202 |
prompt.submit,
|
@@ -205,12 +229,15 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
205 |
fn=generate,
|
206 |
inputs=[
|
207 |
prompt,
|
|
|
|
|
208 |
seed,
|
209 |
width,
|
210 |
height,
|
211 |
guidance_scale,
|
212 |
randomize_seed,
|
213 |
style_selection,
|
|
|
214 |
],
|
215 |
outputs=[result, seed],
|
216 |
api_name="run",
|
|
|
33 |
pipe.load_lora_weights(lora_repo)
|
34 |
pipe.to("cuda")
|
35 |
|
36 |
+
# Define style options with negative prompts
|
37 |
style_list = [
|
38 |
{
|
39 |
"name": "3840 x 2160",
|
40 |
"prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
|
41 |
+
"negative_prompt": "",
|
42 |
},
|
43 |
{
|
44 |
"name": "2560 x 1440",
|
45 |
"prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
|
46 |
+
"negative_prompt": "",
|
47 |
},
|
48 |
{
|
49 |
"name": "HD+",
|
50 |
"prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
|
51 |
+
"negative_prompt": "",
|
52 |
},
|
53 |
{
|
54 |
"name": "Style Zero",
|
55 |
"prompt": "{prompt}",
|
56 |
+
"negative_prompt": "",
|
57 |
},
|
58 |
]
|
59 |
|
60 |
+
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
|
61 |
DEFAULT_STYLE_NAME = "3840 x 2160"
|
62 |
STYLE_NAMES = list(styles.keys())
|
63 |
|
64 |
# Apply selected style to the prompt
|
65 |
+
def apply_style(style_name: str, positive: str) -> Tuple[str, str]:
|
66 |
+
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
|
67 |
+
return p.replace("{prompt}", positive), n
|
68 |
|
69 |
# Image generation function with Spaces GPU support
|
70 |
@spaces.GPU(duration=60, enable_queue=True)
|
71 |
def generate(
|
72 |
prompt: str,
|
73 |
+
negative_prompt: str = "",
|
74 |
+
use_negative_prompt: bool = False,
|
75 |
seed: int = 0,
|
76 |
width: int = 1024,
|
77 |
height: int = 1024,
|
78 |
guidance_scale: float = 3,
|
79 |
randomize_seed: bool = False,
|
80 |
style_name: str = DEFAULT_STYLE_NAME,
|
81 |
+
num_inference_steps: int = 30,
|
82 |
progress=gr.Progress(track_tqdm=True),
|
83 |
):
|
84 |
+
positive_prompt, style_negative_prompt = apply_style(style_name, prompt)
|
85 |
+
|
86 |
+
if use_negative_prompt:
|
87 |
+
final_negative_prompt = style_negative_prompt + " " + negative_prompt
|
88 |
+
else:
|
89 |
+
final_negative_prompt = style_negative_prompt
|
90 |
+
|
91 |
+
final_negative_prompt = final_negative_prompt.strip()
|
92 |
|
93 |
if trigger_word:
|
94 |
positive_prompt = f"{trigger_word} {positive_prompt}"
|
95 |
+
|
96 |
+
seed = int(randomize_seed_fn(seed, randomize_seed))
|
97 |
+
generator = torch.Generator(device="cuda").manual_seed(seed)
|
98 |
+
|
99 |
images = pipe(
|
100 |
prompt=positive_prompt,
|
101 |
+
negative_prompt=final_negative_prompt if final_negative_prompt else None,
|
102 |
width=width,
|
103 |
height=height,
|
104 |
guidance_scale=guidance_scale,
|
105 |
+
num_inference_steps=num_inference_steps,
|
106 |
num_images_per_prompt=1,
|
107 |
+
generator=generator,
|
108 |
output_type="pil",
|
109 |
).images
|
110 |
image_paths = [save_image(img) for img in images]
|
|
|
111 |
return image_paths, seed
|
112 |
|
113 |
# Example prompts
|
|
|
140 |
'''
|
141 |
|
142 |
# Gradio interface
|
143 |
+
with gr.Blocks(css=css) as demo:
|
144 |
with gr.Row():
|
145 |
+
prompt = gr.Text(
|
146 |
+
label="Prompt",
|
147 |
+
show_label=False,
|
148 |
+
max_lines=1,
|
149 |
+
placeholder="Enter your prompt",
|
150 |
+
container=False,
|
151 |
+
)
|
152 |
+
run_button = gr.Button("Run", scale=0, elem_classes="submit-btn")
|
153 |
+
result = gr.Gallery(label="Result", columns=1, show_label=False)
|
154 |
+
|
155 |
+
with gr.Accordion("Advanced options", open=False):
|
156 |
+
style_selection = gr.Dropdown(
|
157 |
+
label="Quality Style",
|
158 |
+
choices=STYLE_NAMES,
|
159 |
+
value=DEFAULT_STYLE_NAME,
|
160 |
+
interactive=True,
|
161 |
+
)
|
162 |
+
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False)
|
163 |
+
negative_prompt = gr.Text(
|
164 |
+
label="Negative prompt",
|
165 |
+
max_lines=1,
|
166 |
+
placeholder="Enter a negative prompt",
|
167 |
+
visible=False,
|
168 |
+
)
|
169 |
+
seed = gr.Slider(
|
170 |
+
label="Seed",
|
171 |
+
minimum=0,
|
172 |
+
maximum=MAX_SEED,
|
173 |
+
step=1,
|
174 |
+
value=0,
|
175 |
+
)
|
176 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
177 |
+
with gr.Row():
|
178 |
+
width = gr.Slider(
|
179 |
+
label="Width",
|
180 |
+
minimum=512,
|
181 |
+
maximum=2048,
|
182 |
+
step=64,
|
183 |
+
value=1280,
|
184 |
)
|
185 |
+
height = gr.Slider(
|
186 |
+
label="Height",
|
187 |
+
minimum=512,
|
188 |
+
maximum=2048,
|
189 |
+
step=64,
|
190 |
+
value=832,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
)
|
192 |
+
guidance_scale = gr.Slider(
|
193 |
+
label="Guidance Scale",
|
194 |
+
minimum=0.1,
|
195 |
+
maximum=20.0,
|
196 |
+
step=0.1,
|
197 |
+
value=3.0,
|
198 |
+
)
|
199 |
+
num_inference_steps = gr.Slider(
|
200 |
+
label="Number of inference steps",
|
201 |
+
minimum=1,
|
202 |
+
maximum=40,
|
203 |
+
step=1,
|
204 |
+
value=30,
|
205 |
+
)
|
206 |
+
|
207 |
+
gr.Examples(
|
208 |
+
examples=examples,
|
209 |
+
inputs=prompt,
|
210 |
+
outputs=[result, seed],
|
211 |
+
fn=generate,
|
212 |
+
cache_examples=False,
|
213 |
+
)
|
214 |
+
|
215 |
+
# Handle visibility of negative prompt
|
216 |
+
use_negative_prompt.change(
|
217 |
+
fn=lambda x: gr.update(visible=x),
|
218 |
+
inputs=use_negative_prompt,
|
219 |
+
outputs=negative_prompt,
|
220 |
+
api_name=False,
|
221 |
+
)
|
222 |
+
|
223 |
+
# Trigger generate on prompt submit or run button click
|
224 |
gr.on(
|
225 |
triggers=[
|
226 |
prompt.submit,
|
|
|
229 |
fn=generate,
|
230 |
inputs=[
|
231 |
prompt,
|
232 |
+
negative_prompt,
|
233 |
+
use_negative_prompt,
|
234 |
seed,
|
235 |
width,
|
236 |
height,
|
237 |
guidance_scale,
|
238 |
randomize_seed,
|
239 |
style_selection,
|
240 |
+
num_inference_steps,
|
241 |
],
|
242 |
outputs=[result, seed],
|
243 |
api_name="run",
|