FLUX-REALISM / app.py
prithivMLmods's picture
Update app.py
7d0e511 verified
raw
history blame
12.7 kB
import os
import random
import uuid
import json
import time
import asyncio
import re
from threading import Thread
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import edge_tts
import subprocess
# Install flash-attn with our environment flag (if needed)
subprocess.run(
'pip install flash-attn --no-build-isolation',
env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"},
shell=True
)
# -------------------------------
# CONFIGURATION & UTILITY FUNCTIONS
# -------------------------------
MAX_SEED = np.iinfo(np.int32).max
def save_image(img: Image.Image) -> str:
"""Save a PIL image with a unique filename and return its path."""
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name)
return unique_name
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
# Determine preferred torch dtype based on GPU support.
bf16_supported = torch.cuda.is_bf16_supported()
preferred_dtype = torch.bfloat16 if bf16_supported else torch.float16
# -------------------------------
# FLUX.1 IMAGE GENERATION SETUP
# -------------------------------
from diffusers import DiffusionPipeline
base_model = "black-forest-labs/FLUX.1-dev"
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=preferred_dtype)
lora_repo = "strangerzonehf/Flux-Super-Realism-LoRA"
trigger_word = "Super Realism" # Leave blank if no trigger word is needed.
pipe.load_lora_weights(lora_repo)
pipe.to("cuda")
# Define style prompts for Flux.1
style_list = [
{
"name": "3840 x 2160",
"prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
},
{
"name": "2560 x 1440",
"prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
},
{
"name": "HD+",
"prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
},
{
"name": "Style Zero",
"prompt": "{prompt}",
},
]
styles = {s["name"]: s["prompt"] for s in style_list}
DEFAULT_STYLE_NAME = "3840 x 2160"
STYLE_NAMES = list(styles.keys())
def apply_style(style_name: str, positive: str) -> str:
return styles.get(style_name, styles[DEFAULT_STYLE_NAME]).replace("{prompt}", positive)
@spaces.GPU(duration=60, enable_queue=True)
def generate_image_flux(
prompt: str,
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 3,
randomize_seed: bool = False,
style_name: str = DEFAULT_STYLE_NAME,
progress=gr.Progress(track_tqdm=True),
):
"""Generate an image using the Flux.1 pipeline with a chosen style."""
torch.cuda.empty_cache() # Clear unused GPU memory to prevent allocation errors
seed = int(randomize_seed_fn(seed, randomize_seed))
positive_prompt = apply_style(style_name, prompt)
if trigger_word:
positive_prompt = f"{trigger_word} {positive_prompt}"
# Wrap the diffusion call in no_grad to avoid unnecessary gradient state.
with torch.no_grad():
images = pipe(
prompt=positive_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=28,
num_images_per_prompt=1,
output_type="pil",
).images
torch.cuda.synchronize() # Ensure all CUDA operations have completed
image_paths = [save_image(img) for img in images]
return image_paths, seed
# -------------------------------
# SMOLVLM2 SETUP (Default Text/Multimodal Model)
# -------------------------------
from transformers import AutoProcessor, AutoModelForImageTextToText, TextIteratorStreamer
smol_processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM2-2.2B-Instruct")
smol_model = AutoModelForImageTextToText.from_pretrained(
"HuggingFaceTB/SmolVLM2-2.2B-Instruct",
_attn_implementation="flash_attention_2",
torch_dtype=preferred_dtype
).to("cuda:0")
# -------------------------------
# UTILITY FUNCTIONS
# -------------------------------
def progress_bar_html(label: str) -> str:
"""
Returns an HTML snippet for an animated progress bar with a given label.
"""
return f'''
<div style="display: flex; align-items: center;">
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
<div style="width: 110px; height: 5px; background-color: #FFC0CB; border-radius: 2px; overflow: hidden;">
<div style="width: 100%; height: 100%; background-color: #FF69B4; animation: loading 1.5s linear infinite;"></div>
</div>
</div>
<style>
@keyframes loading {{
0% {{ transform: translateX(-100%); }}
100% {{ transform: translateX(100%); }}
}}
</style>
'''
TTS_VOICES = [
"en-US-JennyNeural", # @tts1
"en-US-GuyNeural", # @tts2
]
async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
"""Convert text to speech using Edge TTS and save the output as MP3."""
communicate = edge_tts.Communicate(text, voice)
await communicate.save(output_file)
return output_file
# -------------------------------
# CHAT / MULTIMODAL GENERATION FUNCTION
# -------------------------------
@spaces.GPU
def generate(
input_dict: dict,
chat_history: list[dict],
max_tokens: int = 200,
):
"""
Generates chatbot responses using SmolVLM2 by default—with support for multimodal inputs and TTS.
Special commands:
- "@image": triggers image generation using the Flux.1 pipeline.
- "@tts1" or "@tts2": triggers text-to-speech after generation.
"""
torch.cuda.empty_cache() # Clear unused GPU memory for consistency
text = input_dict["text"]
files = input_dict.get("files", [])
# If the query starts with "@image", use Flux.1 to generate an image.
if text.strip().lower().startswith("@image"):
prompt = text[len("@image"):].strip()
yield progress_bar_html("Hold Tight Generating Flux.1 Image")
image_paths, used_seed = generate_image_flux(
prompt=prompt,
seed=1,
width=1024,
height=1024,
guidance_scale=3,
randomize_seed=True,
style_name=DEFAULT_STYLE_NAME,
progress=gr.Progress(track_tqdm=True),
)
yield gr.Image(image_paths[0])
return
# Handle TTS commands if present.
tts_prefix = "@tts"
is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3))
voice = None
if is_tts:
voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
if voice_index:
voice = TTS_VOICES[voice_index - 1]
text = text.replace(f"{tts_prefix}{voice_index}", "").strip()
# Use SmolVLM2 for chat/multimodal text generation.
yield "Processing with SmolVLM2"
# Build conversation messages based on input and history.
user_content = []
media_queue = []
if chat_history == []:
text = text.strip()
for file in files:
if file.endswith((".png", ".jpg", ".jpeg", ".gif", ".bmp")):
media_queue.append({"type": "image", "path": file})
elif file.endswith((".mp4", ".mov", ".avi", ".mkv", ".flv")):
media_queue.append({"type": "video", "path": file})
if "<image>" in text or "<video>" in text:
parts = re.split(r'(<image>|<video>)', text)
for part in parts:
if part == "<image>" and media_queue:
user_content.append(media_queue.pop(0))
elif part == "<video>" and media_queue:
user_content.append(media_queue.pop(0))
elif part.strip():
user_content.append({"type": "text", "text": part.strip()})
else:
user_content.append({"type": "text", "text": text})
for media in media_queue:
user_content.append(media)
resulting_messages = [{"role": "user", "content": user_content}]
else:
resulting_messages = []
user_content = []
media_queue = []
for hist in chat_history:
if hist["role"] == "user" and isinstance(hist["content"], tuple):
file_name = hist["content"][0]
if file_name.endswith((".png", ".jpg", ".jpeg")):
media_queue.append({"type": "image", "path": file_name})
elif file_name.endswith(".mp4"):
media_queue.append({"type": "video", "path": file_name})
for hist in chat_history:
if hist["role"] == "user" and isinstance(hist["content"], str):
txt = hist["content"]
parts = re.split(r'(<image>|<video>)', txt)
for part in parts:
if part == "<image>" and media_queue:
user_content.append(media_queue.pop(0))
elif part == "<video>" and media_queue:
user_content.append(media_queue.pop(0))
elif part.strip():
user_content.append({"type": "text", "text": part.strip()})
elif hist["role"] == "assistant":
resulting_messages.append({
"role": "user",
"content": user_content
})
resulting_messages.append({
"role": "assistant",
"content": [{"type": "text", "text": hist["content"]}]
})
user_content = []
if not resulting_messages:
resulting_messages = [{"role": "user", "content": user_content}]
if text == "" and not files:
yield "Please input a query and optionally image(s)."
return
if text == "" and files:
yield "Please input a text query along with the image(s)."
return
print("resulting_messages", resulting_messages)
inputs = smol_processor.apply_chat_template(
resulting_messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
)
# Explicitly cast pixel values to the preferred dtype to match model weights.
if "pixel_values" in inputs:
inputs["pixel_values"] = inputs["pixel_values"].to(preferred_dtype)
inputs = inputs.to(smol_model.device)
streamer = TextIteratorStreamer(smol_processor, skip_prompt=True, skip_special_tokens=True)
generation_args = dict(inputs, streamer=streamer, max_new_tokens=max_tokens)
thread = Thread(target=smol_model.generate, kwargs=generation_args)
thread.start()
yield "..."
buffer = ""
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer
if is_tts and voice:
final_response = buffer
output_file = asyncio.run(text_to_speech(final_response, voice))
yield gr.Audio(output_file, autoplay=True)
# -------------------------------
# GRADIO CHAT INTERFACE
# -------------------------------
DESCRIPTION = "# Flux.1 Realism 🥖 + SmolVLM2 Chat"
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>⚠️Running on CPU, this may not work as expected.</p>"
css = '''
h1 {
text-align: center;
display: block;
}
#duplicate-button {
margin: auto;
color: #fff;
background: #1565c0;
border-radius: 100vh;
}
'''
demo = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Slider(minimum=100, maximum=500, step=50, value=200, label="Max Tokens"),
],
examples=[
[{"text": "@image A futuristic cityscape at dusk in hyper-realistic 8K"}],
[{"text": "Describe this image.", "files": ["example_images/mosque.jpg"]}],
[{"text": "What does this document say?", "files": ["example_images/document.jpg"]}],
[{"text": "@tts1 Explain the weather patterns shown in this diagram.", "files": ["example_images/examples_weather_events.png"]}],
],
cache_examples=False,
type="messages",
description=DESCRIPTION,
css=css,
fill_height=True,
textbox=gr.MultimodalTextbox(
label="Query Input",
file_types=["image", ".mp4"],
file_count="multiple",
placeholder="Type text and/or upload media. Use '@image' for Flux.1 image gen, '@tts1' or '@tts2' for TTS."
),
stop_btn="Stop Generation",
multimodal=True,
)
if __name__ == "__main__":
demo.queue(max_size=20).launch(share=True)