Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,862 Bytes
2230883 cbc2b17 2230883 8a2ba41 2230883 ee317af 2230883 ee317af 2230883 ee317af 2230883 8a2ba41 cbc2b17 2230883 8a2ba41 5663d15 8a2ba41 2230883 8a2ba41 ee317af 8a2ba41 ee317af 5663d15 8a2ba41 ee317af 7d0e511 ee317af 8a2ba41 5663d15 8a2ba41 cbc2b17 8a2ba41 cbc2b17 8a2ba41 2230883 8a2ba41 2230883 8a2ba41 2230883 8a2ba41 2230883 8a2ba41 cbc2b17 8a2ba41 cbc2b17 8a2ba41 cbc2b17 2230883 cbc2b17 8a2ba41 cbc2b17 8a2ba41 cbc2b17 8a2ba41 cbc2b17 8a2ba41 cbc2b17 8a2ba41 cbc2b17 8a2ba41 cbc2b17 8a2ba41 cbc2b17 8a2ba41 cbc2b17 8a2ba41 cbc2b17 8a2ba41 cbc2b17 ee317af 8a2ba41 2230883 8a2ba41 cbc2b17 2230883 8a2ba41 2230883 8a2ba41 2230883 dc7f40f ee317af 8a2ba41 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
import os
import random
import uuid
import json
import time
import asyncio
import re
from threading import Thread
from io import BytesIO
import subprocess
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import edge_tts
# Install flash-attn without building CUDA kernels (if needed)
subprocess.run(
'pip install flash-attn --no-build-isolation',
env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"},
shell=True
)
from transformers import AutoProcessor, AutoModelForImageTextToText, TextIteratorStreamer
from diffusers import DiffusionPipeline
# ------------------------------------------------------------------------------
# Global Configurations
# ------------------------------------------------------------------------------
DESCRIPTION = "# SmolVLM2 with Flux.1 Integration 📺"
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>⚠️Running on CPU, This may not work on CPU.</p>"
css = '''
h1 {
text-align: center;
display: block;
}
'''
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# ------------------------------------------------------------------------------
# FLUX.1 IMAGE GENERATION SETUP
# ------------------------------------------------------------------------------
MAX_SEED = np.iinfo(np.int32).max
def save_image(img: Image.Image) -> str:
"""Save a PIL image with a unique filename and return the path."""
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name)
return unique_name
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
# Initialize Flux.1 pipeline
base_model = "black-forest-labs/FLUX.1-dev"
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
lora_repo = "strangerzonehf/Flux-Super-Realism-LoRA"
trigger_word = "Super Realism" # Leave blank if no trigger word is needed.
pipe.load_lora_weights(lora_repo)
pipe.to("cuda")
# Define style prompts for Flux.1
style_list = [
{
"name": "3840 x 2160",
"prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
},
{
"name": "2560 x 1440",
"prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
},
{
"name": "HD+",
"prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
},
{
"name": "Style Zero",
"prompt": "{prompt}",
},
]
styles = {s["name"]: s["prompt"] for s in style_list}
DEFAULT_STYLE_NAME = "3840 x 2160"
STYLE_NAMES = list(styles.keys())
def apply_style(style_name: str, positive: str) -> str:
return styles.get(style_name, styles[DEFAULT_STYLE_NAME]).replace("{prompt}", positive)
def generate_image_flux(
prompt: str,
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 3,
randomize_seed: bool = False,
style_name: str = DEFAULT_STYLE_NAME,
):
"""Generate an image using the Flux.1 pipeline with style prompts."""
seed = int(randomize_seed_fn(seed, randomize_seed))
positive_prompt = apply_style(style_name, prompt)
if trigger_word:
positive_prompt = f"{trigger_word} {positive_prompt}"
images = pipe(
prompt=positive_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=28,
num_images_per_prompt=1,
output_type="pil",
).images
image_paths = [save_image(img) for img in images]
return image_paths, seed
# ------------------------------------------------------------------------------
# SMOLVLM2 MODEL SETUP
# ------------------------------------------------------------------------------
processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM2-2.2B-Instruct")
model = AutoModelForImageTextToText.from_pretrained(
"HuggingFaceTB/SmolVLM2-2.2B-Instruct",
_attn_implementation="flash_attention_2",
torch_dtype=torch.bfloat16
).to("cuda:0")
# ------------------------------------------------------------------------------
# CHAT / INFERENCE FUNCTION
# ------------------------------------------------------------------------------
@spaces.GPU
def model_inference(input_dict, history, max_tokens):
"""
Implements a chat interface using SmolVLM2.
Special behavior:
- If the query text starts with "@image", the Flux.1 pipeline is used to generate an image.
- Otherwise, the query is processed with SmolVLM2.
- In the SmolVLM2 branch, a progress message "Processing with SmolVLM2..." is yielded.
"""
text = input_dict["text"]
files = input_dict.get("files", [])
# If the text begins with "@image", use Flux.1 image generation.
if text.strip().lower().startswith("@image"):
prompt = text[len("@image"):].strip()
yield "Hold Tight Generating Flux.1 Image..."
image_paths, used_seed = generate_image_flux(
prompt=prompt,
seed=1,
width=1024,
height=1024,
guidance_scale=3,
randomize_seed=True,
style_name=DEFAULT_STYLE_NAME,
)
yield gr.Image(image_paths[0])
return
# Default: Use SmolVLM2 inference.
yield "Processing with SmolVLM2..."
user_content = []
media_queue = []
# If no conversation history, process current input.
if not history:
text = text.strip()
for file in files:
if file.endswith((".png", ".jpg", ".jpeg", ".gif", ".bmp")):
media_queue.append({"type": "image", "path": file})
elif file.endswith((".mp4", ".mov", ".avi", ".mkv", ".flv")):
media_queue.append({"type": "video", "path": file})
if "<image>" in text or "<video>" in text:
parts = re.split(r'(<image>|<video>)', text)
for part in parts:
if part == "<image>" and media_queue:
user_content.append(media_queue.pop(0))
elif part == "<video>" and media_queue:
user_content.append(media_queue.pop(0))
elif part.strip():
user_content.append({"type": "text", "text": part.strip()})
else:
user_content.append({"type": "text", "text": text})
for media in media_queue:
user_content.append(media)
resulting_messages = [{"role": "user", "content": user_content}]
else:
resulting_messages = []
user_content = []
media_queue = []
for hist in history:
if hist["role"] == "user" and isinstance(hist["content"], tuple):
file_name = hist["content"][0]
if file_name.endswith((".png", ".jpg", ".jpeg")):
media_queue.append({"type": "image", "path": file_name})
elif file_name.endswith(".mp4"):
media_queue.append({"type": "video", "path": file_name})
for hist in history:
if hist["role"] == "user" and isinstance(hist["content"], str):
text = hist["content"]
parts = re.split(r'(<image>|<video>)', text)
for part in parts:
if part == "<image>" and media_queue:
user_content.append(media_queue.pop(0))
elif part == "<video>" and media_queue:
user_content.append(media_queue.pop(0))
elif part.strip():
user_content.append({"type": "text", "text": part.strip()})
elif hist["role"] == "assistant":
resulting_messages.append({
"role": "user",
"content": user_content
})
resulting_messages.append({
"role": "assistant",
"content": [{"type": "text", "text": hist["content"]}]
})
user_content = []
if user_content:
resulting_messages.append({"role": "user", "content": user_content})
if text == "" and not files:
yield gr.Error("Please input a query and optionally image(s).")
return
if text == "" and files:
yield gr.Error("Please input a text query along with the image(s).")
return
print("resulting_messages", resulting_messages)
inputs = processor.apply_chat_template(
resulting_messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
)
inputs = inputs.to(model.device)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_args = dict(inputs, streamer=streamer, max_new_tokens=max_tokens)
thread = Thread(target=model.generate, kwargs=generation_args)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer
# ------------------------------------------------------------------------------
# GRADIO CHAT INTERFACE
# ------------------------------------------------------------------------------
examples = [
[{"text": "Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}],
[{"text": "What art era does this artpiece <image> and this artpiece <image> belong to?", "files": ["example_images/rococo.jpg", "example_images/rococo_1.jpg"]}],
[{"text": "Describe this image.", "files": ["example_images/mosque.jpg"]}],
[{"text": "When was this purchase made and how much did it cost?", "files": ["example_images/fiche.jpg"]}],
[{"text": "What is the date in this document?", "files": ["example_images/document.jpg"]}],
[{"text": "What is happening in the video?", "files": ["example_images/short.mp4"]}],
[{"text": "@image A futuristic cityscape with vibrant neon lights"}],
]
demo = gr.ChatInterface(
fn=model_inference,
title="SmolVLM2 with Flux.1 Integration 📺",
description="Play with SmolVLM2 (HuggingFaceTB/SmolVLM2-2.2B-Instruct) with integrated Flux.1 image generation. Use the '@image' prefix to generate images with Flux.1.",
examples=examples,
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", ".mp4"], file_count="multiple"),
stop_btn="Stop Generation",
multimodal=True,
cache_examples=False,
additional_inputs=[gr.Slider(minimum=100, maximum=500, step=50, value=200, label="Max Tokens")],
type="messages"
)
if __name__ == "__main__":
demo.launch(debug=True) |