File size: 10,862 Bytes
2230883
 
 
 
 
 
cbc2b17
2230883
8a2ba41
 
2230883
ee317af
2230883
ee317af
2230883
ee317af
2230883
 
8a2ba41
cbc2b17
 
 
 
2230883
 
8a2ba41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5663d15
8a2ba41
 
 
 
2230883
 
8a2ba41
ee317af
 
 
 
 
 
 
 
 
8a2ba41
ee317af
5663d15
8a2ba41
 
ee317af
7d0e511
ee317af
8a2ba41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5663d15
 
8a2ba41
 
 
 
 
 
 
 
 
 
 
 
 
 
cbc2b17
8a2ba41
cbc2b17
 
8a2ba41
 
 
2230883
8a2ba41
2230883
8a2ba41
 
 
 
 
 
2230883
 
 
8a2ba41
 
2230883
 
8a2ba41
 
 
 
 
 
 
 
 
 
 
cbc2b17
8a2ba41
 
 
 
cbc2b17
 
8a2ba41
 
 
cbc2b17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2230883
cbc2b17
 
 
8a2ba41
cbc2b17
 
 
 
 
 
8a2ba41
cbc2b17
8a2ba41
 
cbc2b17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a2ba41
 
 
cbc2b17
8a2ba41
cbc2b17
 
8a2ba41
cbc2b17
8a2ba41
 
 
cbc2b17
 
 
 
 
 
8a2ba41
 
 
cbc2b17
8a2ba41
 
cbc2b17
8a2ba41
cbc2b17
 
 
 
 
ee317af
8a2ba41
2230883
8a2ba41
 
 
 
 
 
 
 
 
 
cbc2b17
2230883
8a2ba41
 
 
 
 
2230883
 
8a2ba41
 
 
2230883
dc7f40f
ee317af
8a2ba41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import os
import random
import uuid
import json
import time
import asyncio
import re
from threading import Thread
from io import BytesIO
import subprocess

import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import edge_tts

# Install flash-attn without building CUDA kernels (if needed)
subprocess.run(
    'pip install flash-attn --no-build-isolation',
    env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"},
    shell=True
)

from transformers import AutoProcessor, AutoModelForImageTextToText, TextIteratorStreamer
from diffusers import DiffusionPipeline

# ------------------------------------------------------------------------------
# Global Configurations
# ------------------------------------------------------------------------------
DESCRIPTION = "# SmolVLM2 with Flux.1 Integration 📺"
if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>⚠️Running on CPU, This may not work on CPU.</p>"

css = '''
h1 {
  text-align: center;
  display: block;
}
'''

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# ------------------------------------------------------------------------------
# FLUX.1 IMAGE GENERATION SETUP
# ------------------------------------------------------------------------------
MAX_SEED = np.iinfo(np.int32).max

def save_image(img: Image.Image) -> str:
    """Save a PIL image with a unique filename and return the path."""
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name)
    return unique_name

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

# Initialize Flux.1 pipeline
base_model = "black-forest-labs/FLUX.1-dev"
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
lora_repo = "strangerzonehf/Flux-Super-Realism-LoRA"
trigger_word = "Super Realism"  # Leave blank if no trigger word is needed.
pipe.load_lora_weights(lora_repo)
pipe.to("cuda")

# Define style prompts for Flux.1
style_list = [
    {
        "name": "3840 x 2160",
        "prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
    },
    {
        "name": "2560 x 1440",
        "prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
    },
    {
        "name": "HD+",
        "prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
    },
    {
        "name": "Style Zero",
        "prompt": "{prompt}",
    },
]
styles = {s["name"]: s["prompt"] for s in style_list}
DEFAULT_STYLE_NAME = "3840 x 2160"
STYLE_NAMES = list(styles.keys())

def apply_style(style_name: str, positive: str) -> str:
    return styles.get(style_name, styles[DEFAULT_STYLE_NAME]).replace("{prompt}", positive)

def generate_image_flux(
    prompt: str,
    seed: int = 0,
    width: int = 1024,
    height: int = 1024,
    guidance_scale: float = 3,
    randomize_seed: bool = False,
    style_name: str = DEFAULT_STYLE_NAME,
):
    """Generate an image using the Flux.1 pipeline with style prompts."""
    seed = int(randomize_seed_fn(seed, randomize_seed))
    positive_prompt = apply_style(style_name, prompt)
    if trigger_word:
        positive_prompt = f"{trigger_word} {positive_prompt}"
    images = pipe(
        prompt=positive_prompt,
        width=width,
        height=height,
        guidance_scale=guidance_scale,
        num_inference_steps=28,
        num_images_per_prompt=1,
        output_type="pil",
    ).images
    image_paths = [save_image(img) for img in images]
    return image_paths, seed

# ------------------------------------------------------------------------------
# SMOLVLM2 MODEL SETUP
# ------------------------------------------------------------------------------
processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM2-2.2B-Instruct")
model = AutoModelForImageTextToText.from_pretrained(
    "HuggingFaceTB/SmolVLM2-2.2B-Instruct",
    _attn_implementation="flash_attention_2",
    torch_dtype=torch.bfloat16
).to("cuda:0")

# ------------------------------------------------------------------------------
# CHAT / INFERENCE FUNCTION
# ------------------------------------------------------------------------------
@spaces.GPU
def model_inference(input_dict, history, max_tokens):
    """
    Implements a chat interface using SmolVLM2.
    
    Special behavior:
      - If the query text starts with "@image", the Flux.1 pipeline is used to generate an image.
      - Otherwise, the query is processed with SmolVLM2.
      - In the SmolVLM2 branch, a progress message "Processing with SmolVLM2..." is yielded.
    """
    text = input_dict["text"]
    files = input_dict.get("files", [])
    
    # If the text begins with "@image", use Flux.1 image generation.
    if text.strip().lower().startswith("@image"):
        prompt = text[len("@image"):].strip()
        yield "Hold Tight Generating Flux.1 Image..."
        image_paths, used_seed = generate_image_flux(
            prompt=prompt,
            seed=1,
            width=1024,
            height=1024,
            guidance_scale=3,
            randomize_seed=True,
            style_name=DEFAULT_STYLE_NAME,
        )
        yield gr.Image(image_paths[0])
        return
    
    # Default: Use SmolVLM2 inference.
    yield "Processing with SmolVLM2..."
    
    user_content = []
    media_queue = []
    
    # If no conversation history, process current input.
    if not history:
        text = text.strip()
        for file in files:
            if file.endswith((".png", ".jpg", ".jpeg", ".gif", ".bmp")):
                media_queue.append({"type": "image", "path": file})
            elif file.endswith((".mp4", ".mov", ".avi", ".mkv", ".flv")):
                media_queue.append({"type": "video", "path": file})
        if "<image>" in text or "<video>" in text:
            parts = re.split(r'(<image>|<video>)', text)
            for part in parts:
                if part == "<image>" and media_queue:
                    user_content.append(media_queue.pop(0))
                elif part == "<video>" and media_queue:
                    user_content.append(media_queue.pop(0))
                elif part.strip():
                    user_content.append({"type": "text", "text": part.strip()})
        else:
            user_content.append({"type": "text", "text": text})
            for media in media_queue:
                user_content.append(media)
        resulting_messages = [{"role": "user", "content": user_content}]
    else:
        resulting_messages = []
        user_content = []
        media_queue = []
        for hist in history:
            if hist["role"] == "user" and isinstance(hist["content"], tuple):
                file_name = hist["content"][0]
                if file_name.endswith((".png", ".jpg", ".jpeg")):
                    media_queue.append({"type": "image", "path": file_name})
                elif file_name.endswith(".mp4"):
                    media_queue.append({"type": "video", "path": file_name})
        for hist in history:
            if hist["role"] == "user" and isinstance(hist["content"], str):
                text = hist["content"]
                parts = re.split(r'(<image>|<video>)', text)
                for part in parts:
                    if part == "<image>" and media_queue:
                        user_content.append(media_queue.pop(0))
                    elif part == "<video>" and media_queue:
                        user_content.append(media_queue.pop(0))
                    elif part.strip():
                        user_content.append({"type": "text", "text": part.strip()})
            elif hist["role"] == "assistant":
                resulting_messages.append({
                    "role": "user",
                    "content": user_content
                })
                resulting_messages.append({
                    "role": "assistant",
                    "content": [{"type": "text", "text": hist["content"]}]
                })
                user_content = []
        if user_content:
            resulting_messages.append({"role": "user", "content": user_content})
    
    if text == "" and not files:
        yield gr.Error("Please input a query and optionally image(s).")
        return
    if text == "" and files:
        yield gr.Error("Please input a text query along with the image(s).")
        return
    
    print("resulting_messages", resulting_messages)
    inputs = processor.apply_chat_template(
        resulting_messages,
        add_generation_prompt=True,
        tokenize=True,
        return_dict=True,
        return_tensors="pt",
    )
    inputs = inputs.to(model.device)
    
    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    generation_args = dict(inputs, streamer=streamer, max_new_tokens=max_tokens)
    
    thread = Thread(target=model.generate, kwargs=generation_args)
    thread.start()
    
    buffer = ""
    for new_text in streamer:
        buffer += new_text
        time.sleep(0.01)
        yield buffer

# ------------------------------------------------------------------------------
# GRADIO CHAT INTERFACE
# ------------------------------------------------------------------------------
examples = [
    [{"text": "Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}],
    [{"text": "What art era does this artpiece <image> and this artpiece <image> belong to?", "files": ["example_images/rococo.jpg", "example_images/rococo_1.jpg"]}],
    [{"text": "Describe this image.", "files": ["example_images/mosque.jpg"]}],
    [{"text": "When was this purchase made and how much did it cost?", "files": ["example_images/fiche.jpg"]}],
    [{"text": "What is the date in this document?", "files": ["example_images/document.jpg"]}],
    [{"text": "What is happening in the video?", "files": ["example_images/short.mp4"]}],
    [{"text": "@image A futuristic cityscape with vibrant neon lights"}],
]

demo = gr.ChatInterface(
    fn=model_inference,
    title="SmolVLM2 with Flux.1 Integration 📺",
    description="Play with SmolVLM2 (HuggingFaceTB/SmolVLM2-2.2B-Instruct) with integrated Flux.1 image generation. Use the '@image' prefix to generate images with Flux.1.",
    examples=examples,
    textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", ".mp4"], file_count="multiple"),
    stop_btn="Stop Generation",
    multimodal=True,
    cache_examples=False,
    additional_inputs=[gr.Slider(minimum=100, maximum=500, step=50, value=200, label="Max Tokens")],
    type="messages"
)

if __name__ == "__main__":
    demo.launch(debug=True)