File size: 11,862 Bytes
2230883
 
 
 
 
 
 
 
ee317af
2230883
ee317af
2230883
ee317af
2230883
 
65928b6
 
 
 
 
 
2230883
65928b6
8a2ba41
 
65928b6
 
 
8a2ba41
 
 
 
 
 
65928b6
 
 
 
 
 
 
8a2ba41
 
65928b6
 
 
 
8a2ba41
5663d15
65928b6
 
 
2230883
65928b6
 
 
 
 
 
 
 
 
ee317af
65928b6
 
 
 
ee317af
65928b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee317af
5663d15
8a2ba41
65928b6
ee317af
7d0e511
ee317af
65928b6
8a2ba41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65928b6
8a2ba41
 
 
 
 
 
65928b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a2ba41
 
 
 
 
 
 
65928b6
8a2ba41
65928b6
8a2ba41
 
 
 
 
 
5663d15
 
8a2ba41
 
 
 
 
 
 
 
65928b6
 
 
 
2230883
65928b6
 
 
 
 
 
 
 
 
2230883
65928b6
 
 
 
2230883
 
 
65928b6
2230883
65928b6
 
 
 
 
 
8a2ba41
 
 
 
 
 
 
65928b6
8a2ba41
65928b6
 
 
 
 
8a2ba41
65928b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbc2b17
65928b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2230883
65928b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbc2b17
2230883
65928b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2230883
 
 
dc7f40f
ee317af
65928b6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import os
import random
import uuid
import json
import time
import asyncio
from threading import Thread

import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import edge_tts

from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    TextIteratorStreamer,
    Qwen2VLForConditionalGeneration,
    AutoProcessor,
)
from transformers.image_utils import load_image
from diffusers import DiffusionPipeline

DESCRIPTION = """
# QwQ Edge 💬 with Flux.1
"""

css = '''
h1 {
  text-align: center;
  display: block;
}

#duplicate-button {
  margin: auto;
  color: #fff;
  background: #1565c0;
  border-radius: 100vh;
}
'''

MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# --------------------------
# Text Generation Components
# --------------------------

# Load text-only model and tokenizer
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="auto",
    torch_dtype=torch.bfloat16,
)
model.eval()

TTS_VOICES = [
    "en-US-JennyNeural",  # @tts1
    "en-US-GuyNeural",    # @tts2
]

# Multimodal model (text+vision)
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" 
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
    MODEL_ID,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to("cuda").eval()

async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
    """Convert text to speech using Edge TTS and save as MP3"""
    communicate = edge_tts.Communicate(text, voice)
    await communicate.save(output_file)
    return output_file

def clean_chat_history(chat_history):
    """
    Filter out any chat entries whose "content" is not a string.
    This helps prevent errors when concatenating previous messages.
    """
    cleaned = []
    for msg in chat_history:
        if isinstance(msg, dict) and isinstance(msg.get("content"), str):
            cleaned.append(msg)
    return cleaned

# --------------------------
# Flux.1 Image Generation
# --------------------------

# Set up the Flux.1 pipeline
base_model = "black-forest-labs/FLUX.1-dev"
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
lora_repo = "strangerzonehf/Flux-Super-Realism-LoRA"
trigger_word = "Super Realism"  # Leave trigger_word blank if not used.
pipe.load_lora_weights(lora_repo)
pipe.to("cuda")

# Define style prompts
style_list = [
    {
        "name": "3840 x 2160",
        "prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
    },
    {
        "name": "2560 x 1440",
        "prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
    },
    {
        "name": "HD+",
        "prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
    },
    {
        "name": "Style Zero",
        "prompt": "{prompt}",
    },
]
styles = {k["name"]: k["prompt"] for k in style_list}
DEFAULT_STYLE_NAME = "3840 x 2160"
STYLE_NAMES = list(styles.keys())

def apply_style(style_name: str, positive: str) -> str:
    return styles.get(style_name, styles[DEFAULT_STYLE_NAME]).replace("{prompt}", positive)

MAX_SEED = np.iinfo(np.int32).max

def save_image(img: Image.Image) -> str:
    """Save a PIL image with a unique filename and return the path."""
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name)
    return unique_name

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

def progress_bar_html(label: str) -> str:
    """
    Returns an HTML snippet for a thin progress bar with a label.
    The progress bar is styled as a dark red animated bar.
    """
    return f'''
<div style="display: flex; align-items: center;">
    <span style="margin-right: 10px; font-size: 14px;">{label}</span>
    <div style="width: 110px; height: 5px; background-color: #f0f0f0; border-radius: 2px; overflow: hidden;">
        <div style="width: 100%; height: 100%; background-color: #ff5900; animation: loading 1.5s linear infinite;"></div>
    </div>
</div>
<style>
@keyframes loading {{
    0% {{ transform: translateX(-100%); }}
    100% {{ transform: translateX(100%); }}
}}
</style>
    '''

@spaces.GPU(duration=60, enable_queue=True)
def generate_image_fn(
    prompt: str,
    seed: int = 0,
    width: int = 1024,
    height: int = 1024,
    guidance_scale: float = 3,
    randomize_seed: bool = False,
    style_name: str = DEFAULT_STYLE_NAME,
    progress=gr.Progress(track_tqdm=True),
):
    """Generate images using the Flux.1 pipeline."""
    seed = int(randomize_seed_fn(seed, randomize_seed))
    positive_prompt = apply_style(style_name, prompt)
    if trigger_word:
        positive_prompt = f"{trigger_word} {positive_prompt}"
    images = pipe(
        prompt=positive_prompt,
        width=width,
        height=height,
        guidance_scale=guidance_scale,
        num_inference_steps=28,
        num_images_per_prompt=1,
        output_type="pil",
    ).images
    image_paths = [save_image(img) for img in images]
    return image_paths, seed

# --------------------------
# Chat and Multimodal Generation
# --------------------------

@spaces.GPU
def generate(
    input_dict: dict,
    chat_history: list[dict],
    max_new_tokens: int = 1024,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.2,
):
    """
    Generates chatbot responses with support for multimodal input, TTS, and image generation using Flux.1.
    Special commands:
      - "@tts1" or "@tts2": triggers text-to-speech.
      - "@image": triggers image generation using the Flux.1 pipeline.
    """
    text = input_dict["text"]
    files = input_dict.get("files", [])

    if text.strip().lower().startswith("@image"):
        # Remove the "@image" tag and use the rest as prompt
        prompt_img = text[len("@image"):].strip()
        # Show animated progress bar for image generation
        yield progress_bar_html("Generating Image")
        image_paths, used_seed = generate_image_fn(
            prompt=prompt_img,
            seed=1,
            width=1024,
            height=1024,
            guidance_scale=3,
            randomize_seed=True,
            style_name=DEFAULT_STYLE_NAME,
        )
        # Once done, yield the generated image
        yield gr.Image(image_paths[0])
        return  # Exit early

    tts_prefix = "@tts"
    is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3))
    voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
    
    if is_tts and voice_index:
        voice = TTS_VOICES[voice_index - 1]
        text = text.replace(f"{tts_prefix}{voice_index}", "").strip()
        # Clear previous chat history for a fresh TTS request.
        conversation = [{"role": "user", "content": text}]
    else:
        voice = None
        # Remove any stray @tts tags and build the conversation history.
        text = text.replace(tts_prefix, "").strip()
        conversation = clean_chat_history(chat_history)
        conversation.append({"role": "user", "content": text})

    if files:
        if len(files) > 1:
            images = [load_image(image) for image in files]
        elif len(files) == 1:
            images = [load_image(files[0])]
        else:
            images = []
        messages = [{
            "role": "user",
            "content": [
                *[{"type": "image", "image": image} for image in images],
                {"type": "text", "text": text},
            ]
        }]
        prompt_multimodal = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
        inputs = processor(text=[prompt_multimodal], images=images, return_tensors="pt", padding=True).to("cuda")
        streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
        generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
        thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
        thread.start()

        buffer = ""
        # Show animated progress bar for multimodal generation
        yield progress_bar_html("Thinking...")
        for new_text in streamer:
            buffer += new_text
            buffer = buffer.replace("<|im_end|>", "")
            time.sleep(0.01)
            yield buffer
    else:
        input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
        if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
            input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
            gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
        input_ids = input_ids.to(model.device)
        streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
        generation_kwargs = {
            "input_ids": input_ids,
            "streamer": streamer,
            "max_new_tokens": max_new_tokens,
            "do_sample": True,
            "top_p": top_p,
            "top_k": top_k,
            "temperature": temperature,
            "num_beams": 1,
            "repetition_penalty": repetition_penalty,
        }
        t = Thread(target=model.generate, kwargs=generation_kwargs)
        t.start()

        outputs = []
        # Show animated progress bar for text generation
        yield progress_bar_html("Thinking...")
        for new_text in streamer:
            outputs.append(new_text)
            yield "".join(outputs)

        final_response = "".join(outputs)
        yield final_response

        # If TTS was requested, convert the final response to speech.
        if is_tts and voice:
            output_file = asyncio.run(text_to_speech(final_response, voice))
            yield gr.Audio(output_file, autoplay=True)

# --------------------------
# Gradio Chat Interface
# --------------------------

demo = gr.ChatInterface(
    fn=generate,
    additional_inputs=[
        gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
        gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
        gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
        gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
        gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
    ],
    examples=[
        ["@image A futuristic cityscape at sunset with vibrant colors"],
        ["Python Program for Array Rotation"],
        ["@tts1 Who is Nikola Tesla, and why did he die?"],
        [{"text": "Extract JSON from the image", "files": ["examples/document.jpg"]}],
        [{"text": "summarize the letter", "files": ["examples/1.png"]}],
        ["@tts2 What causes rainbows to form?"],
    ],
    cache_examples=False,
    type="messages",
    description=DESCRIPTION,
    css=css,
    fill_height=True,
    textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple", placeholder="‎ @tts1, @tts2-voices, @image-image gen, default [text, vision]"),
    stop_btn="Stop Generation",
    multimodal=True,
)

if __name__ == "__main__":
    demo.queue(max_size=20).launch(share=True)