Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,7 @@
|
|
1 |
#!/usr/bin/env python
|
2 |
-
|
|
|
|
|
3 |
import os
|
4 |
import random
|
5 |
import uuid
|
@@ -13,10 +15,7 @@ import torch
|
|
13 |
from diffusers import DiffusionPipeline
|
14 |
from typing import Tuple
|
15 |
|
16 |
-
#
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
bad_words = json.loads(os.getenv('BAD_WORDS', "[]"))
|
21 |
bad_words_negative = json.loads(os.getenv('BAD_WORDS_NEGATIVE', "[]"))
|
22 |
default_negative = os.getenv("default_negative","")
|
@@ -30,10 +29,12 @@ def check_text(prompt, negative=""):
|
|
30 |
return True
|
31 |
return False
|
32 |
|
33 |
-
|
34 |
-
|
35 |
style_list = [
|
36 |
-
|
|
|
|
|
|
|
|
|
37 |
{
|
38 |
"name": "2560 x 1440",
|
39 |
"prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
|
@@ -41,46 +42,140 @@ style_list = [
|
|
41 |
},
|
42 |
|
43 |
{
|
44 |
-
"name": "
|
45 |
-
"prompt": "
|
46 |
-
"negative_prompt": "
|
47 |
-
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
{
|
50 |
"name": "Cinematic",
|
51 |
-
"prompt": "cinematic
|
52 |
-
"negative_prompt": "
|
53 |
},
|
54 |
-
|
55 |
{
|
56 |
-
"name": "
|
57 |
-
"prompt": "
|
58 |
-
"negative_prompt": "
|
59 |
},
|
60 |
{
|
61 |
-
"name": "
|
62 |
-
"prompt": "
|
63 |
-
"negative_prompt": "
|
64 |
},
|
65 |
{
|
66 |
-
"name": "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
"prompt": "{prompt}",
|
68 |
"negative_prompt": "",
|
69 |
},
|
70 |
]
|
71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
|
|
|
|
|
73 |
STYLE_NAMES = list(styles.keys())
|
74 |
-
|
|
|
|
|
|
|
|
|
75 |
|
76 |
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
if not negative:
|
79 |
negative = ""
|
80 |
return p.replace("{prompt}", positive), n + negative
|
81 |
|
82 |
-
|
83 |
-
|
84 |
|
85 |
|
86 |
DESCRIPTION = """## MidJourney
|
@@ -89,9 +184,6 @@ Drop your best results in the community: [rb.gy/klkbs7](http://rb.gy/klkbs7), Ha
|
|
89 |
"""
|
90 |
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
if not torch.cuda.is_available():
|
96 |
DESCRIPTION += "\n<p>⚠️Running on CPU, This may not work on CPU.</p>"
|
97 |
|
@@ -103,40 +195,27 @@ ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
|
103 |
|
104 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
105 |
|
106 |
-
NUM_IMAGES_PER_PROMPT = 1
|
107 |
-
|
108 |
if torch.cuda.is_available():
|
109 |
pipe = DiffusionPipeline.from_pretrained(
|
110 |
-
"SG161222/
|
111 |
torch_dtype=torch.float16,
|
112 |
use_safetensors=True,
|
113 |
add_watermarker=False,
|
114 |
variant="fp16"
|
115 |
-
)
|
116 |
-
|
117 |
-
"SG161222/RealVisXL_V2.02_Turbo",
|
118 |
-
torch_dtype=torch.float16,
|
119 |
-
use_safetensors=True,
|
120 |
-
add_watermarker=False,
|
121 |
-
variant="fp16"
|
122 |
-
)
|
123 |
if ENABLE_CPU_OFFLOAD:
|
124 |
pipe.enable_model_cpu_offload()
|
125 |
-
pipe2.enable_model_cpu_offload()
|
126 |
else:
|
127 |
-
pipe.to(device)
|
128 |
-
pipe2.to(device)
|
129 |
print("Loaded on Device!")
|
130 |
-
|
131 |
if USE_TORCH_COMPILE:
|
132 |
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
133 |
-
pipe2.unet = torch.compile(pipe2.unet, mode="reduce-overhead", fullgraph=True)
|
134 |
print("Model Compiled!")
|
135 |
|
136 |
-
def save_image(img):
|
137 |
-
|
138 |
-
img.save(unique_name)
|
139 |
-
return unique_name
|
140 |
|
141 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
142 |
if randomize_seed:
|
@@ -149,6 +228,9 @@ def generate(
|
|
149 |
negative_prompt: str = "",
|
150 |
use_negative_prompt: bool = False,
|
151 |
style: str = DEFAULT_STYLE_NAME,
|
|
|
|
|
|
|
152 |
seed: int = 0,
|
153 |
width: int = 1024,
|
154 |
height: int = 1024,
|
@@ -160,7 +242,13 @@ def generate(
|
|
160 |
if check_text(prompt, negative_prompt):
|
161 |
raise ValueError("Prompt contains restricted words.")
|
162 |
|
163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
165 |
generator = torch.Generator().manual_seed(seed)
|
166 |
|
@@ -168,33 +256,52 @@ def generate(
|
|
168 |
negative_prompt = "" # type: ignore
|
169 |
negative_prompt += default_negative
|
170 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
options = {
|
172 |
"prompt": prompt,
|
173 |
"negative_prompt": negative_prompt,
|
174 |
"width": width,
|
175 |
"height": height,
|
176 |
"guidance_scale": guidance_scale,
|
177 |
-
"num_inference_steps":
|
178 |
"generator": generator,
|
179 |
-
"num_images_per_prompt":
|
180 |
"use_resolution_binning": use_resolution_binning,
|
181 |
"output_type": "pil",
|
182 |
}
|
183 |
|
184 |
-
|
|
|
185 |
|
186 |
-
|
187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
|
189 |
examples = [
|
190 |
-
"
|
191 |
-
"
|
192 |
-
"
|
193 |
"Closeup of blonde woman depth of field, bokeh, shallow focus, minimalism, fujifilm xh2s with Canon EF lens, cinematic --ar 85:128 --v 6.0 --style raw"
|
194 |
]
|
195 |
|
196 |
css = '''
|
197 |
-
.gradio-container{max-width:
|
198 |
h1{text-align:center}
|
199 |
'''
|
200 |
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
@@ -214,23 +321,61 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
214 |
container=False,
|
215 |
)
|
216 |
run_button = gr.Button("Run")
|
217 |
-
result = gr.Gallery(label="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
218 |
with gr.Accordion("Advanced options", open=False):
|
219 |
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True, visible=True)
|
220 |
negative_prompt = gr.Text(
|
221 |
label="Negative prompt",
|
222 |
max_lines=1,
|
223 |
placeholder="Enter a negative prompt",
|
224 |
-
value="(deformed
|
225 |
visible=True,
|
226 |
)
|
227 |
with gr.Row():
|
228 |
num_inference_steps = gr.Slider(
|
229 |
label="Steps",
|
230 |
minimum=10,
|
231 |
-
maximum=
|
232 |
step=1,
|
233 |
-
value=
|
234 |
)
|
235 |
with gr.Row():
|
236 |
num_images_per_prompt = gr.Slider(
|
@@ -249,6 +394,7 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
249 |
visible=True
|
250 |
)
|
251 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
|
|
252 |
with gr.Row(visible=True):
|
253 |
width = gr.Slider(
|
254 |
label="Width",
|
@@ -264,6 +410,7 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
264 |
step=8,
|
265 |
value=1024,
|
266 |
)
|
|
|
267 |
with gr.Row():
|
268 |
guidance_scale = gr.Slider(
|
269 |
label="Guidance Scale",
|
@@ -272,20 +419,13 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
272 |
step=0.1,
|
273 |
value=6,
|
274 |
)
|
275 |
-
|
276 |
-
style_selection = gr.Radio(
|
277 |
-
show_label=True,
|
278 |
-
container=True,
|
279 |
-
interactive=True,
|
280 |
-
choices=STYLE_NAMES,
|
281 |
-
value=DEFAULT_STYLE_NAME,
|
282 |
-
label="Image Style",
|
283 |
-
)
|
284 |
gr.Examples(
|
285 |
examples=examples,
|
286 |
inputs=prompt,
|
287 |
outputs=[result, seed],
|
288 |
fn=generate,
|
|
|
289 |
cache_examples=CACHE_EXAMPLES,
|
290 |
)
|
291 |
|
@@ -308,6 +448,9 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
308 |
negative_prompt,
|
309 |
use_negative_prompt,
|
310 |
style_selection,
|
|
|
|
|
|
|
311 |
seed,
|
312 |
width,
|
313 |
height,
|
@@ -319,4 +462,4 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
319 |
)
|
320 |
|
321 |
if __name__ == "__main__":
|
322 |
-
demo.queue(max_size=20).launch()
|
|
|
1 |
#!/usr/bin/env python
|
2 |
+
#patch 0.04
|
3 |
+
#Func() Dalle Collage Moved Midjourney Space
|
4 |
+
#Pruned DalleCollage Space
|
5 |
import os
|
6 |
import random
|
7 |
import uuid
|
|
|
15 |
from diffusers import DiffusionPipeline
|
16 |
from typing import Tuple
|
17 |
|
18 |
+
#BaseConditions--
|
|
|
|
|
|
|
19 |
bad_words = json.loads(os.getenv('BAD_WORDS', "[]"))
|
20 |
bad_words_negative = json.loads(os.getenv('BAD_WORDS_NEGATIVE', "[]"))
|
21 |
default_negative = os.getenv("default_negative","")
|
|
|
29 |
return True
|
30 |
return False
|
31 |
|
|
|
|
|
32 |
style_list = [
|
33 |
+
{
|
34 |
+
"name": "3840 x 2160",
|
35 |
+
"prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
|
36 |
+
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
|
37 |
+
},
|
38 |
{
|
39 |
"name": "2560 x 1440",
|
40 |
"prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
|
|
|
42 |
},
|
43 |
|
44 |
{
|
45 |
+
"name": "HD+",
|
46 |
+
"prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
|
47 |
+
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
|
48 |
+
},
|
49 |
+
|
50 |
+
{
|
51 |
+
"name": "Style Zero",
|
52 |
+
"prompt": "{prompt}",
|
53 |
+
"negative_prompt": "",
|
54 |
+
},
|
55 |
+
]
|
56 |
|
57 |
+
collage_style_list = [
|
58 |
+
{
|
59 |
+
"name": "Hi-Res",
|
60 |
+
"prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
|
61 |
+
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"name": "B & W",
|
65 |
+
"prompt": "black and white collage of {prompt}. monochromatic, timeless, classic, dramatic contrast",
|
66 |
+
"negative_prompt": "colorful, vibrant, bright, flashy",
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"name": "Polaroid",
|
70 |
+
"prompt": "collage of polaroid photos featuring {prompt}. vintage style, high contrast, nostalgic, instant film aesthetic",
|
71 |
+
"negative_prompt": "digital, modern, low quality, blurry",
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"name": "Watercolor",
|
75 |
+
"prompt": "watercolor collage of {prompt}. soft edges, translucent colors, painterly effects",
|
76 |
+
"negative_prompt": "digital, sharp lines, solid colors",
|
77 |
+
},
|
78 |
{
|
79 |
"name": "Cinematic",
|
80 |
+
"prompt": "cinematic collage of {prompt}. film stills, movie posters, dramatic lighting",
|
81 |
+
"negative_prompt": "static, lifeless, mundane",
|
82 |
},
|
|
|
83 |
{
|
84 |
+
"name": "Nostalgic",
|
85 |
+
"prompt": "nostalgic collage of {prompt}. retro imagery, vintage objects, sentimental journey",
|
86 |
+
"negative_prompt": "contemporary, futuristic, forward-looking",
|
87 |
},
|
88 |
{
|
89 |
+
"name": "Vintage",
|
90 |
+
"prompt": "vintage collage of {prompt}. aged paper, sepia tones, retro imagery, antique vibes",
|
91 |
+
"negative_prompt": "modern, contemporary, futuristic, high-tech",
|
92 |
},
|
93 |
{
|
94 |
+
"name": "Scrapbook",
|
95 |
+
"prompt": "scrapbook style collage of {prompt}. mixed media, hand-cut elements, textures, paper, stickers, doodles",
|
96 |
+
"negative_prompt": "clean, digital, modern, low quality",
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"name": "NeoNGlow",
|
100 |
+
"prompt": "neon glow collage of {prompt}. vibrant colors, glowing effects, futuristic vibes",
|
101 |
+
"negative_prompt": "dull, muted colors, vintage, retro",
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"name": "Geometric",
|
105 |
+
"prompt": "geometric collage of {prompt}. abstract shapes, colorful, sharp edges, modern design, high quality",
|
106 |
+
"negative_prompt": "blurry, low quality, traditional, dull",
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"name": "Thematic",
|
110 |
+
"prompt": "thematic collage of {prompt}. cohesive theme, well-organized, matching colors, creative layout",
|
111 |
+
"negative_prompt": "random, messy, unorganized, clashing colors",
|
112 |
+
},
|
113 |
+
|
114 |
+
{
|
115 |
+
"name": "No Style",
|
116 |
"prompt": "{prompt}",
|
117 |
"negative_prompt": "",
|
118 |
},
|
119 |
]
|
120 |
|
121 |
+
filters = {
|
122 |
+
"Vivid": {
|
123 |
+
"prompt": "extra vivid {prompt}",
|
124 |
+
"negative_prompt": "washed out, dull"
|
125 |
+
},
|
126 |
+
"Playa": {
|
127 |
+
"prompt": "{prompt} set in a vast playa",
|
128 |
+
"negative_prompt": "forest, mountains"
|
129 |
+
},
|
130 |
+
"Desert": {
|
131 |
+
"prompt": "{prompt} set in a desert landscape",
|
132 |
+
"negative_prompt": "ocean, city"
|
133 |
+
},
|
134 |
+
"West": {
|
135 |
+
"prompt": "{prompt} with a western theme",
|
136 |
+
"negative_prompt": "eastern, modern"
|
137 |
+
},
|
138 |
+
"Blush": {
|
139 |
+
"prompt": "{prompt} with a soft blush color palette",
|
140 |
+
"negative_prompt": "harsh colors, neon"
|
141 |
+
},
|
142 |
+
"Minimalist": {
|
143 |
+
"prompt": "{prompt} with a minimalist design",
|
144 |
+
"negative_prompt": "cluttered, ornate"
|
145 |
+
},
|
146 |
+
|
147 |
+
"Zero filter": {
|
148 |
+
"prompt": "{prompt}",
|
149 |
+
"negative_prompt": ""
|
150 |
+
},
|
151 |
+
|
152 |
+
|
153 |
+
}
|
154 |
+
|
155 |
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
|
156 |
+
collage_styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in collage_style_list}
|
157 |
+
filter_styles = {k: (v["prompt"], v["negative_prompt"]) for k, v in filters.items()}
|
158 |
STYLE_NAMES = list(styles.keys())
|
159 |
+
COLLAGE_STYLE_NAMES = list(collage_styles.keys())
|
160 |
+
FILTER_NAMES = list(filters.keys())
|
161 |
+
DEFAULT_STYLE_NAME = "3840 x 2160"
|
162 |
+
DEFAULT_COLLAGE_STYLE_NAME = "Hi-Res"
|
163 |
+
DEFAULT_FILTER_NAME = "Vivid"
|
164 |
|
165 |
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
|
166 |
+
if style_name in styles:
|
167 |
+
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
|
168 |
+
elif style_name in collage_styles:
|
169 |
+
p, n = collage_styles.get(style_name, collage_styles[DEFAULT_COLLAGE_STYLE_NAME])
|
170 |
+
elif style_name in filter_styles:
|
171 |
+
p, n = filter_styles.get(style_name, filter_styles[DEFAULT_FILTER_NAME])
|
172 |
+
else:
|
173 |
+
p, n = styles[DEFAULT_STYLE_NAME]
|
174 |
+
|
175 |
if not negative:
|
176 |
negative = ""
|
177 |
return p.replace("{prompt}", positive), n + negative
|
178 |
|
|
|
|
|
179 |
|
180 |
|
181 |
DESCRIPTION = """## MidJourney
|
|
|
184 |
"""
|
185 |
|
186 |
|
|
|
|
|
|
|
187 |
if not torch.cuda.is_available():
|
188 |
DESCRIPTION += "\n<p>⚠️Running on CPU, This may not work on CPU.</p>"
|
189 |
|
|
|
195 |
|
196 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
197 |
|
|
|
|
|
198 |
if torch.cuda.is_available():
|
199 |
pipe = DiffusionPipeline.from_pretrained(
|
200 |
+
"SG161222/RealVisXL_V4.0",
|
201 |
torch_dtype=torch.float16,
|
202 |
use_safetensors=True,
|
203 |
add_watermarker=False,
|
204 |
variant="fp16"
|
205 |
+
).to(device)
|
206 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
if ENABLE_CPU_OFFLOAD:
|
208 |
pipe.enable_model_cpu_offload()
|
|
|
209 |
else:
|
210 |
+
pipe.to(device)
|
|
|
211 |
print("Loaded on Device!")
|
212 |
+
|
213 |
if USE_TORCH_COMPILE:
|
214 |
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
|
|
215 |
print("Model Compiled!")
|
216 |
|
217 |
+
def save_image(img, path):
|
218 |
+
img.save(path)
|
|
|
|
|
219 |
|
220 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
221 |
if randomize_seed:
|
|
|
228 |
negative_prompt: str = "",
|
229 |
use_negative_prompt: bool = False,
|
230 |
style: str = DEFAULT_STYLE_NAME,
|
231 |
+
collage_style: str = DEFAULT_COLLAGE_STYLE_NAME,
|
232 |
+
filter_name: str = DEFAULT_FILTER_NAME,
|
233 |
+
grid_size: str = "2x2",
|
234 |
seed: int = 0,
|
235 |
width: int = 1024,
|
236 |
height: int = 1024,
|
|
|
242 |
if check_text(prompt, negative_prompt):
|
243 |
raise ValueError("Prompt contains restricted words.")
|
244 |
|
245 |
+
if collage_style != "No Style":
|
246 |
+
prompt, negative_prompt = apply_style(collage_style, prompt, negative_prompt)
|
247 |
+
elif filter_name != "No Filter":
|
248 |
+
prompt, negative_prompt = apply_style(filter_name, prompt, negative_prompt)
|
249 |
+
else:
|
250 |
+
prompt, negative_prompt = apply_style(style, prompt, negative_prompt)
|
251 |
+
|
252 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
253 |
generator = torch.Generator().manual_seed(seed)
|
254 |
|
|
|
256 |
negative_prompt = "" # type: ignore
|
257 |
negative_prompt += default_negative
|
258 |
|
259 |
+
grid_sizes = {
|
260 |
+
"2x1": (2, 1),
|
261 |
+
"1x2": (1, 2),
|
262 |
+
"2x2": (2, 2),
|
263 |
+
"2x3": (2, 3),
|
264 |
+
"3x2": (3, 2),
|
265 |
+
"1x1": (1, 1)
|
266 |
+
}
|
267 |
+
|
268 |
+
grid_size_x, grid_size_y = grid_sizes.get(grid_size, (2, 2))
|
269 |
+
num_images = grid_size_x * grid_size_y
|
270 |
+
|
271 |
options = {
|
272 |
"prompt": prompt,
|
273 |
"negative_prompt": negative_prompt,
|
274 |
"width": width,
|
275 |
"height": height,
|
276 |
"guidance_scale": guidance_scale,
|
277 |
+
"num_inference_steps": 20,
|
278 |
"generator": generator,
|
279 |
+
"num_images_per_prompt": num_images,
|
280 |
"use_resolution_binning": use_resolution_binning,
|
281 |
"output_type": "pil",
|
282 |
}
|
283 |
|
284 |
+
torch.cuda.empty_cache() # Clear GPU memory
|
285 |
+
images = pipe(**options).images
|
286 |
|
287 |
+
grid_img = Image.new('RGB', (width * grid_size_x, height * grid_size_y))
|
288 |
+
|
289 |
+
for i, img in enumerate(images[:num_images]):
|
290 |
+
grid_img.paste(img, (i % grid_size_x * width, i // grid_size_x * height))
|
291 |
+
|
292 |
+
unique_name = str(uuid.uuid4()) + ".png"
|
293 |
+
save_image(grid_img, unique_name)
|
294 |
+
return [unique_name], seed
|
295 |
|
296 |
examples = [
|
297 |
+
"Portrait of a beautiful woman in a hat, summer outfit, with freckles on her face, in a close up shot, with sunlight, outdoors, in soft light, with a beach background, looking at the camera, with high resolution photography, in the style of Hasselblad X2D50c --ar 85:128 --v 6.0 --style raw",
|
298 |
+
"3d image, cute girl, in the style of Pixar --ar 1:2 --stylize 750, 4K resolution highlights, Sharp focus, octane render, ray tracing, Ultra-High-Definition, 8k, UHD, HDR, (Masterpiece:1.5), (best quality:1.5)",
|
299 |
+
"Cold coffee in a cup bokeh --ar 85:128 --v 6.0 --style raw5, 4K, Photo-Realistic",
|
300 |
"Closeup of blonde woman depth of field, bokeh, shallow focus, minimalism, fujifilm xh2s with Canon EF lens, cinematic --ar 85:128 --v 6.0 --style raw"
|
301 |
]
|
302 |
|
303 |
css = '''
|
304 |
+
.gradio-container{max-width: 670px !important}
|
305 |
h1{text-align:center}
|
306 |
'''
|
307 |
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
|
321 |
container=False,
|
322 |
)
|
323 |
run_button = gr.Button("Run")
|
324 |
+
result = gr.Gallery(label="Grid", columns=1, preview=True)
|
325 |
+
|
326 |
+
|
327 |
+
with gr.Row(visible=True):
|
328 |
+
filter_selection = gr.Radio(
|
329 |
+
show_label=True,
|
330 |
+
container=True,
|
331 |
+
interactive=True,
|
332 |
+
choices=FILTER_NAMES,
|
333 |
+
value=DEFAULT_FILTER_NAME,
|
334 |
+
label="Filter Type",
|
335 |
+
)
|
336 |
+
|
337 |
+
with gr.Row(visible=True):
|
338 |
+
style_selection = gr.Radio(
|
339 |
+
show_label=True,
|
340 |
+
container=True,
|
341 |
+
interactive=True,
|
342 |
+
choices=STYLE_NAMES,
|
343 |
+
value=DEFAULT_STYLE_NAME,
|
344 |
+
label="Quality Style",
|
345 |
+
)
|
346 |
+
|
347 |
+
with gr.Row(visible=True):
|
348 |
+
collage_style_selection = gr.Radio(
|
349 |
+
show_label=True,
|
350 |
+
container=True,
|
351 |
+
interactive=True,
|
352 |
+
choices=COLLAGE_STYLE_NAMES,
|
353 |
+
value=DEFAULT_COLLAGE_STYLE_NAME,
|
354 |
+
label="Collage Template",
|
355 |
+
)
|
356 |
+
with gr.Row(visible=True):
|
357 |
+
grid_size_selection = gr.Dropdown(
|
358 |
+
choices=["2x1", "1x2", "2x2", "2x3", "3x2", "1x1"],
|
359 |
+
value="2x2",
|
360 |
+
label="Grid Size"
|
361 |
+
)
|
362 |
+
|
363 |
with gr.Accordion("Advanced options", open=False):
|
364 |
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True, visible=True)
|
365 |
negative_prompt = gr.Text(
|
366 |
label="Negative prompt",
|
367 |
max_lines=1,
|
368 |
placeholder="Enter a negative prompt",
|
369 |
+
value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
|
370 |
visible=True,
|
371 |
)
|
372 |
with gr.Row():
|
373 |
num_inference_steps = gr.Slider(
|
374 |
label="Steps",
|
375 |
minimum=10,
|
376 |
+
maximum=30,
|
377 |
step=1,
|
378 |
+
value=15,
|
379 |
)
|
380 |
with gr.Row():
|
381 |
num_images_per_prompt = gr.Slider(
|
|
|
394 |
visible=True
|
395 |
)
|
396 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
397 |
+
|
398 |
with gr.Row(visible=True):
|
399 |
width = gr.Slider(
|
400 |
label="Width",
|
|
|
410 |
step=8,
|
411 |
value=1024,
|
412 |
)
|
413 |
+
|
414 |
with gr.Row():
|
415 |
guidance_scale = gr.Slider(
|
416 |
label="Guidance Scale",
|
|
|
419 |
step=0.1,
|
420 |
value=6,
|
421 |
)
|
422 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
423 |
gr.Examples(
|
424 |
examples=examples,
|
425 |
inputs=prompt,
|
426 |
outputs=[result, seed],
|
427 |
fn=generate,
|
428 |
+
#cache_examples=True,
|
429 |
cache_examples=CACHE_EXAMPLES,
|
430 |
)
|
431 |
|
|
|
448 |
negative_prompt,
|
449 |
use_negative_prompt,
|
450 |
style_selection,
|
451 |
+
collage_style_selection,
|
452 |
+
filter_selection,
|
453 |
+
grid_size_selection,
|
454 |
seed,
|
455 |
width,
|
456 |
height,
|
|
|
462 |
)
|
463 |
|
464 |
if __name__ == "__main__":
|
465 |
+
demo.queue(max_size=20).launch()
|