Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -4,8 +4,6 @@ from threading import Thread
|
|
4 |
import time
|
5 |
import torch
|
6 |
import spaces
|
7 |
-
import cv2
|
8 |
-
import numpy as np
|
9 |
from PIL import Image
|
10 |
from transformers import (
|
11 |
Qwen2VLForConditionalGeneration,
|
@@ -35,30 +33,6 @@ def progress_bar_html(label: str, primary_color: str = "#4B0082", secondary_colo
|
|
35 |
</style>
|
36 |
'''
|
37 |
|
38 |
-
def downsample_video(video_path):
|
39 |
-
"""
|
40 |
-
Downsamples a video file by extracting 10 evenly spaced frames.
|
41 |
-
Returns a list of tuples (PIL.Image, timestamp).
|
42 |
-
"""
|
43 |
-
vidcap = cv2.VideoCapture(video_path)
|
44 |
-
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
45 |
-
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
46 |
-
frames = []
|
47 |
-
if total_frames <= 0 or fps <= 0:
|
48 |
-
vidcap.release()
|
49 |
-
return frames
|
50 |
-
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
|
51 |
-
for i in frame_indices:
|
52 |
-
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
53 |
-
success, image = vidcap.read()
|
54 |
-
if success:
|
55 |
-
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
56 |
-
pil_image = Image.fromarray(image)
|
57 |
-
timestamp = round(i / fps, 2)
|
58 |
-
frames.append((pil_image, timestamp))
|
59 |
-
vidcap.release()
|
60 |
-
return frames
|
61 |
-
|
62 |
# Model and Processor Setup
|
63 |
QV_MODEL_ID = "prithivMLmods/Qwen2-VL-Ocrtest-2B-Instruct"
|
64 |
qwen_processor = AutoProcessor.from_pretrained(QV_MODEL_ID, trust_remote_code=True)
|
@@ -83,28 +57,19 @@ def model_inference(message, history, use_docscopeocr):
|
|
83 |
files = message.get("files", [])
|
84 |
|
85 |
if not text and not files:
|
86 |
-
yield "Error: Please input a text query or provide files
|
87 |
return
|
88 |
|
89 |
-
# Process files: images
|
90 |
image_list = []
|
91 |
for idx, file in enumerate(files):
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
image_list.append((label, frame))
|
100 |
-
else:
|
101 |
-
try:
|
102 |
-
img = load_image(file)
|
103 |
-
label = f"Image {idx+1}:"
|
104 |
-
image_list.append((label, img))
|
105 |
-
except Exception as e:
|
106 |
-
yield f"Error loading image: {str(e)}"
|
107 |
-
return
|
108 |
|
109 |
# Build content list
|
110 |
content = [{"type": "text", "text": text}]
|
@@ -147,9 +112,8 @@ def model_inference(message, history, use_docscopeocr):
|
|
147 |
|
148 |
# Gradio Interface
|
149 |
examples = [
|
150 |
-
[{"text": "OCR the
|
151 |
-
[{"text": "
|
152 |
-
[{"text": "Describe the ad in detail.", "files": ["example/demo2.mp4"]}],
|
153 |
]
|
154 |
|
155 |
demo = gr.ChatInterface(
|
@@ -158,9 +122,9 @@ demo = gr.ChatInterface(
|
|
158 |
examples=examples,
|
159 |
textbox=gr.MultimodalTextbox(
|
160 |
label="Query Input",
|
161 |
-
file_types=["image"
|
162 |
file_count="multiple",
|
163 |
-
placeholder="Input your query and optionally upload image(s)
|
164 |
),
|
165 |
stop_btn="Stop Generation",
|
166 |
multimodal=True,
|
|
|
4 |
import time
|
5 |
import torch
|
6 |
import spaces
|
|
|
|
|
7 |
from PIL import Image
|
8 |
from transformers import (
|
9 |
Qwen2VLForConditionalGeneration,
|
|
|
33 |
</style>
|
34 |
'''
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
# Model and Processor Setup
|
37 |
QV_MODEL_ID = "prithivMLmods/Qwen2-VL-Ocrtest-2B-Instruct"
|
38 |
qwen_processor = AutoProcessor.from_pretrained(QV_MODEL_ID, trust_remote_code=True)
|
|
|
57 |
files = message.get("files", [])
|
58 |
|
59 |
if not text and not files:
|
60 |
+
yield "Error: Please input a text query or provide image files."
|
61 |
return
|
62 |
|
63 |
+
# Process files: images only
|
64 |
image_list = []
|
65 |
for idx, file in enumerate(files):
|
66 |
+
try:
|
67 |
+
img = load_image(file)
|
68 |
+
label = f"Image {idx+1}:"
|
69 |
+
image_list.append((label, img))
|
70 |
+
except Exception as e:
|
71 |
+
yield f"Error loading image: {str(e)}"
|
72 |
+
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
# Build content list
|
75 |
content = [{"type": "text", "text": text}]
|
|
|
112 |
|
113 |
# Gradio Interface
|
114 |
examples = [
|
115 |
+
[{"text": "OCR the text in the image", "files": ["example/image.jpg"]}],
|
116 |
+
[{"text": "Describe the content of the image", "files": ["example/image2.jpg"]}],
|
|
|
117 |
]
|
118 |
|
119 |
demo = gr.ChatInterface(
|
|
|
122 |
examples=examples,
|
123 |
textbox=gr.MultimodalTextbox(
|
124 |
label="Query Input",
|
125 |
+
file_types=["image"],
|
126 |
file_count="multiple",
|
127 |
+
placeholder="Input your query and optionally upload image(s). Select the model using the checkbox."
|
128 |
),
|
129 |
stop_btn="Stop Generation",
|
130 |
multimodal=True,
|