File size: 6,114 Bytes
a85c4cf
b3a3e40
 
 
a85c4cf
b3a3e40
221d2b6
 
b3a3e40
 
 
 
 
e01e01c
b3a3e40
 
 
5e65c11
b3a3e40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
221d2b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3a3e40
1a0114d
b3a3e40
 
 
 
 
 
 
758151c
 
 
 
b3a3e40
 
 
 
 
 
428b15d
 
 
 
b3a3e40
221d2b6
b3a3e40
 
221d2b6
b3a3e40
428b15d
221d2b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3a3e40
 
 
 
 
 
 
 
 
 
758151c
 
 
 
04cce22
b3a3e40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c04a995
fbaf052
ce6643f
b3a3e40
 
428b15d
 
 
 
 
 
221d2b6
428b15d
221d2b6
428b15d
 
 
 
76be116
428b15d
 
70cf16f
758151c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import gradio as gr
from transformers.image_utils import load_image
from threading import Thread
import time
import torch
import spaces
import cv2
import numpy as np
from PIL import Image
from transformers import (
    Qwen2VLForConditionalGeneration,
    AutoProcessor,
    TextIteratorStreamer,
)
from transformers import Qwen2_5_VLForConditionalGeneration

# Helper Functions
def progress_bar_html(label: str, primary_color: str = "#FF69B4", secondary_color: str = "#FFB6C1") -> str:
    """
    Returns an HTML snippet for a thin animated progress bar with a label.
    Colors can be customized; default colors are used for Qwen2VL/Aya‑Vision.
    """
    return f'''
<div style="display: flex; align-items: center;">
    <span style="margin-right: 10px; font-size: 14px;">{label}</span>
    <div style="width: 110px; height: 5px; background-color: {secondary_color}; border-radius: 2px; overflow: hidden;">
        <div style="width: 100%; height: 100%; background-color: {primary_color}; animation: loading 1.5s linear infinite;"></div>
    </div>
</div>
<style>
@keyframes loading {{
    0% {{ transform: translateX(-100%); }}
    100% {{ transform: translateX(100%); }}
}}
</style>
    '''

def downsample_video(video_path):
    """
    Downsamples a video file by extracting 10 evenly spaced frames.
    Returns a list of tuples (PIL.Image, timestamp).
    """
    vidcap = cv2.VideoCapture(video_path)
    total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = vidcap.get(cv2.CAP_PROP_FPS)
    frames = []
    if total_frames <= 0 or fps <= 0:
        vidcap.release()
        return frames
    frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
    for i in frame_indices:
        vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
        success, image = vidcap.read()
        if success:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            pil_image = Image.fromarray(image)
            timestamp = round(i / fps, 2)
            frames.append((pil_image, timestamp))
    vidcap.release()
    return frames

# Model and Processor Setup
QV_MODEL_ID = "prithivMLmods/Qwen2-VL-Ocrtest-2B-Instruct"
qwen_processor = AutoProcessor.from_pretrained(QV_MODEL_ID, trust_remote_code=True)
qwen_model = Qwen2VLForConditionalGeneration.from_pretrained(
    QV_MODEL_ID,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to("cuda").eval()

DOCSCOPEOCR_MODEL_ID = "prithivMLmods/docscopeOCR-7B-050425-exp"
docscopeocr_processor = AutoProcessor.from_pretrained(DOCSCOPEOCR_MODEL_ID, trust_remote_code=True)
docscopeocr_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    DOCSCOPEOCR_MODEL_ID,
    trust_remote_code=True,
    torch_dtype=torch.bfloat16
).to("cuda").eval()

# Main Inference Function
@spaces.GPU
def model_inference(message, history, use_docscopeocr):
    text = message["text"].strip()
    files = message.get("files", [])

    if not text and not files:
        yield "Error: Please input a text query or provide image or video files."
        return

    # Process files: images and videos
    image_list = []
    for idx, file in enumerate(files):
        if file.lower().endswith((".mp4", ".avi", ".mov")):
            frames = downsample_video(file)
            if not frames:
                yield "Error: Could not extract frames from the video."
                return
            for frame, timestamp in frames:
                label = f"Video {idx+1} Frame {timestamp}:"
                image_list.append((label, frame))
        else:
            try:
                img = load_image(file)
                label = f"Image {idx+1}:"
                image_list.append((label, img))
            except Exception as e:
                yield f"Error loading image: {str(e)}"
                return

    # Build content list
    content = [{"type": "text", "text": text}]
    for label, img in image_list:
        content.append({"type": "text", "text": label})
        content.append({"type": "image", "image": img})

    messages = [{"role": "user", "content": content}]

    # Select processor and model
    if use_docscopeocr:
        processor = docscopeocr_processor
        model = docscopeocr_model
        model_name = "DocScopeOCR"
    else:
        processor = qwen_processor
        model = qwen_model
        model_name = "Qwen2VL OCR"

    prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    all_images = [item["image"] for item in content if item["type"] == "image"]
    inputs = processor(
        text=[prompt_full],
        images=all_images if all_images else None,
        return_tensors="pt",
        padding=True,
    ).to("cuda")

    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    buffer = ""
    yield progress_bar_html(f"Processing with {model_name}")
    for new_text in streamer:
        buffer += new_text
        buffer = buffer.replace("<|im_end|>", "")
        time.sleep(0.01)
        yield buffer

# Gradio Interface
examples = [
    [{"text": "OCR the text in the image", "files": ["example/image1.jpg"]}],
    [{"text": "Describe the content of the image", "files": ["example/image2.jpg"]}],
    [{"text": "Extract the image content", "files": ["example/image3.jpg"]}],
]

demo = gr.ChatInterface(
    fn=model_inference,
    description="# **DocScope OCR `VL/OCR`**",
    examples=examples,
    textbox=gr.MultimodalTextbox(
        label="Query Input",
        file_types=["image", "video"],
        file_count="multiple",
        placeholder="Input your query and optionally upload image(s) or video(s). Select the model using the checkbox."
    ),
    stop_btn="Stop Generation",
    multimodal=True,
    cache_examples=False,
    theme="bethecloud/storj_theme",
    additional_inputs=[gr.Checkbox(label="Use DocScopeOCR", value=True, info="Check to use DocScopeOCR, uncheck to use Qwen2VL OCR")],
)

demo.launch(debug=True, ssr_mode=False)