Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,114 Bytes
a85c4cf b3a3e40 a85c4cf b3a3e40 221d2b6 b3a3e40 e01e01c b3a3e40 221d2b6 b3a3e40 1a0114d b3a3e40 758151c b3a3e40 428b15d b3a3e40 221d2b6 b3a3e40 221d2b6 b3a3e40 428b15d 221d2b6 b3a3e40 758151c 04cce22 b3a3e40 c04a995 fbaf052 ce6643f b3a3e40 428b15d 221d2b6 428b15d 221d2b6 428b15d 76be116 428b15d 70cf16f 758151c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
import gradio as gr
from transformers.image_utils import load_image
from threading import Thread
import time
import torch
import spaces
import cv2
import numpy as np
from PIL import Image
from transformers import (
Qwen2VLForConditionalGeneration,
AutoProcessor,
TextIteratorStreamer,
)
from transformers import Qwen2_5_VLForConditionalGeneration
# Helper Functions
def progress_bar_html(label: str, primary_color: str = "#4B0082", secondary_color: str = "#9370DB") -> str:
"""
Returns an HTML snippet for a thin animated progress bar with a label.
Colors can be customized; default colors are used for Qwen2VL/Aya‑Vision.
"""
return f'''
<div style="display: flex; align-items: center;">
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
<div style="width: 110px; height: 5px; background-color: {secondary_color}; border-radius: 2px; overflow: hidden;">
<div style="width: 100%; height: 100%; background-color: {primary_color}; animation: loading 1.5s linear infinite;"></div>
</div>
</div>
<style>
@keyframes loading {{
0% {{ transform: translateX(-100%); }}
100% {{ transform: translateX(100%); }}
}}
</style>
'''
def downsample_video(video_path):
"""
Downsamples a video file by extracting 10 evenly spaced frames.
Returns a list of tuples (PIL.Image, timestamp).
"""
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
frames = []
if total_frames <= 0 or fps <= 0:
vidcap.release()
return frames
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
# Model and Processor Setup
QV_MODEL_ID = "prithivMLmods/Qwen2-VL-Ocrtest-2B-Instruct"
qwen_processor = AutoProcessor.from_pretrained(QV_MODEL_ID, trust_remote_code=True)
qwen_model = Qwen2VLForConditionalGeneration.from_pretrained(
QV_MODEL_ID,
trust_remote_code=True,
torch_dtype=torch.float16
).to("cuda").eval()
DOCSCOPEOCR_MODEL_ID = "prithivMLmods/docscopeOCR-7B-050425-exp"
docscopeocr_processor = AutoProcessor.from_pretrained(DOCSCOPEOCR_MODEL_ID, trust_remote_code=True)
docscopeocr_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
DOCSCOPEOCR_MODEL_ID,
trust_remote_code=True,
torch_dtype=torch.bfloat16
).to("cuda").eval()
# Main Inference Function
@spaces.GPU
def model_inference(message, history, use_docscopeocr):
text = message["text"].strip()
files = message.get("files", [])
if not text and not files:
yield "Error: Please input a text query or provide image or video files."
return
# Process files: images and videos
image_list = []
for idx, file in enumerate(files):
if file.lower().endswith((".mp4", ".avi", ".mov")):
frames = downsample_video(file)
if not frames:
yield "Error: Could not extract frames from the video."
return
for frame, timestamp in frames:
label = f"Video {idx+1} Frame {timestamp}:"
image_list.append((label, frame))
else:
try:
img = load_image(file)
label = f"Image {idx+1}:"
image_list.append((label, img))
except Exception as e:
yield f"Error loading image: {str(e)}"
return
# Build content list
content = [{"type": "text", "text": text}]
for label, img in image_list:
content.append({"type": "text", "text": label})
content.append({"type": "image", "image": img})
messages = [{"role": "user", "content": content}]
# Select processor and model
if use_docscopeocr:
processor = docscopeocr_processor
model = docscopeocr_model
model_name = "DocScopeOCR"
else:
processor = qwen_processor
model = qwen_model
model_name = "Qwen2VL OCR"
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
all_images = [item["image"] for item in content if item["type"] == "image"]
inputs = processor(
text=[prompt_full],
images=all_images if all_images else None,
return_tensors="pt",
padding=True,
).to("cuda")
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html(f"Processing with {model_name}")
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer
# Gradio Interface
examples = [
[{"text": "OCR the text in the image", "files": ["example/image1.jpg"]}],
[{"text": "Describe the content of the image", "files": ["example/image2.jpg"]}],
[{"text": "Extract the image content", "files": ["example/image3.jpg"]}],
]
demo = gr.ChatInterface(
fn=model_inference,
description="# **DocScope OCR `VL/OCR`**",
examples=examples,
textbox=gr.MultimodalTextbox(
label="Query Input",
file_types=["image", "video"],
file_count="multiple",
placeholder="Input your query and optionally upload image(s) or video(s). Select the model using the checkbox."
),
stop_btn="Stop Generation",
multimodal=True,
cache_examples=False,
theme="bethecloud/storj_theme",
additional_inputs=[gr.Checkbox(label="Use DocScopeOCR", value=True, info="Check to use DocScopeOCR, uncheck to use Qwen2VL OCR")],
)
demo.launch(debug=True, ssr_mode=False) |