import os import random import uuid import json import time import asyncio import tempfile from threading import Thread import base64 import shutil import re import gradio as gr import spaces import torch import numpy as np from PIL import Image import edge_tts import trimesh import soundfile as sf # Added for audio processing with Phi-4 import supervision as sv from ultralytics import YOLO as YOLODetector from huggingface_hub import hf_hub_download from transformers import ( AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, Qwen2VLForConditionalGeneration, AutoProcessor, ) from transformers.image_utils import load_image from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler from diffusers import ShapEImg2ImgPipeline, ShapEPipeline from diffusers.utils import export_to_ply # Global constants and helper functions MAX_SEED = np.iinfo(np.int32).max def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed def glb_to_data_url(glb_path: str) -> str: with open(glb_path, "rb") as f: data = f.read() b64_data = base64.b64encode(data).decode("utf-8") return f"data:model/gltf-binary;base64,{b64_data}" # Model class for Text-to-3D Generation (ShapE) class Model: def __init__(self): self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.pipe = ShapEPipeline.from_pretrained("openai/shap-e", torch_dtype=torch.float16) self.pipe.to(self.device) if torch.cuda.is_available(): try: self.pipe.text_encoder = self.pipe.text_encoder.half() except AttributeError: pass self.pipe_img = ShapEImg2ImgPipeline.from_pretrained("openai/shap-e-img2img", torch_dtype=torch.float16) self.pipe_img.to(self.device) if torch.cuda.is_available(): text_encoder_img = getattr(self.pipe_img, "text_encoder", None) if text_encoder_img is not None: self.pipe_img.text_encoder = text_encoder_img.half() def to_glb(self, ply_path: str) -> str: mesh = trimesh.load(ply_path) rot = trimesh.transformations.rotation_matrix(-np.pi / 2, [1, 0, 0]) mesh.apply_transform(rot) rot = trimesh.transformations.rotation_matrix(np.pi, [0, 1, 0]) mesh.apply_transform(rot) mesh_path = tempfile.NamedTemporaryFile(suffix=".glb", delete=False) mesh.export(mesh_path.name, file_type="glb") return mesh_path.name def run_text(self, prompt: str, seed: int = 0, guidance_scale: float = 15.0, num_steps: int = 64) -> str: generator = torch.Generator(device=self.device).manual_seed(seed) images = self.pipe( prompt, generator=generator, guidance_scale=guidance_scale, num_inference_steps=num_steps, output_type="mesh", ).images ply_path = tempfile.NamedTemporaryFile(suffix=".ply", delete=False, mode="w+b") export_to_ply(images[0], ply_path.name) return self.to_glb(ply_path.name) def run_image(self, image: Image.Image, seed: int = 0, guidance_scale: float = 3.0, num_steps: int = 64) -> str: generator = torch.Generator(device=self.device).manual_seed(seed) images = self.pipe_img( image, generator=generator, guidance_scale=guidance_scale, num_inference_steps=num_steps, output_type="mesh", ).images ply_path = tempfile.NamedTemporaryFile(suffix=".ply", delete=False, mode="w+b") export_to_ply(images[0], ply_path.name) return self.to_glb(ply_path.name) # Web Tools using DuckDuckGo and smolagents from typing import Any, Optional from smolagents.tools import Tool import duckduckgo_search class DuckDuckGoSearchTool(Tool): name = "web_search" description = "Performs a duckduckgo web search and returns the top results." inputs = {'query': {'type': 'string', 'description': 'The search query.'}} output_type = "string" def __init__(self, max_results=10, **kwargs): super().__init__() self.max_results = max_results from duckduckgo_search import DDGS self.ddgs = DDGS(**kwargs) def forward(self, query: str) -> str: results = self.ddgs.text(query, max_results=self.max_results) if len(results) == 0: raise Exception("No results found! Try a less restrictive query.") postprocessed_results = [ f"[{result['title']}]({result['href']})\n{result['body']}" for result in results ] return "## Search Results\n\n" + "\n\n".join(postprocessed_results) class VisitWebpageTool(Tool): name = "visit_webpage" description = "Visits a webpage and returns its content as markdown." inputs = {'url': {'type': 'string', 'description': 'The URL to visit.'}} output_type = "string" def __init__(self, *args, **kwargs): self.is_initialized = False def forward(self, url: str) -> str: import requests from markdownify import markdownify from smolagents.utils import truncate_content try: response = requests.get(url, timeout=20) response.raise_for_status() markdown_content = markdownify(response.text).strip() markdown_content = re.sub(r"\n{3,}", "\n\n", markdown_content) return truncate_content(markdown_content, 10000) except requests.exceptions.Timeout: return "The request timed out." except requests.exceptions.RequestException as e: return f"Error fetching webpage: {str(e)}" # rAgent Reasoning using Llama mode OpenAI from openai import OpenAI ACCESS_TOKEN = os.getenv("HF_TOKEN") ragent_client = OpenAI( base_url="https://api-inference.huggingface.co/v1/", api_key=ACCESS_TOKEN, ) SYSTEM_PROMPT = """ "You are an expert assistant who solves tasks using Python code. Follow these steps: 1. **Thought**: Explain your reasoning and plan. 2. **Code**: Write Python code to implement your solution. 3. **Observation**: Analyze the output and summarize results. 4. **Final Answer**: Provide a concise conclusion." """ def ragent_reasoning(prompt: str, history: list[dict], max_tokens: int = 2048, temperature: float = 0.7, top_p: float = 0.95): messages = [{"role": "system", "content": SYSTEM_PROMPT}] for msg in history: if msg.get("role") == "user": messages.append({"role": "user", "content": msg["content"]}) elif msg.get("role") == "assistant": messages.append({"role": "assistant", "content": msg["content"]}) messages.append({"role": "user", "content": prompt}) response = "" stream = ragent_client.chat.completions.create( model="meta-llama/Meta-Llama-3.1-8B-Instruct", max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, messages=messages, ) for message in stream: token = message.choices[0].delta.content response += token yield response # Load Models device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Text-only model model_id = "prithivMLmods/FastThink-0.5B-Tiny" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, device_map="auto", torch_dtype=torch.bfloat16, ) model.eval() # Multimodal model (Qwen2-VL) MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True) model_m = Qwen2VLForConditionalGeneration.from_pretrained( MODEL_ID, trust_remote_code=True, torch_dtype=torch.float16 ).to("cuda").eval() # Phi-4 Multimodal Model phi4_model_path = "microsoft/Phi-4-multimodal-instruct" phi4_processor = AutoProcessor.from_pretrained(phi4_model_path, trust_remote_code=True) phi4_model = AutoModelForCausalLM.from_pretrained( phi4_model_path, device_map="auto", torch_dtype="auto", trust_remote_code=True, _attn_implementation="eager", ) phi4_model.eval() # Stable Diffusion XL Pipeline MODEL_ID_SD = os.getenv("MODEL_VAL_PATH") sd_pipe = StableDiffusionXLPipeline.from_pretrained( MODEL_ID_SD, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, use_safetensors=True, add_watermarker=False, ).to(device) sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config) if torch.cuda.is_available(): sd_pipe.text_encoder = sd_pipe.text_encoder.half() # YOLO Object Detection YOLO_MODEL_REPO = "strangerzonehf/Flux-Ultimate-LoRA-Collection" YOLO_CHECKPOINT_NAME = "images/demo.pt" yolo_model_path = hf_hub_download(repo_id=YOLO_MODEL_REPO, filename=YOLO_CHECKPOINT_NAME) yolo_detector = YOLODetector(yolo_model_path) # TTS Voices TTS_VOICES = ["en-US-JennyNeural", "en-US-GuyNeural"] MAX_MAX_NEW_TOKENS = 2048 DEFAULT_MAX_NEW_TOKENS = 1024 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) # Utility Functions async def text_to_speech(text: str, voice: str, output_file="output.mp3"): communicate = edge_tts.Communicate(text, voice) await communicate.save(output_file) return output_file def clean_chat_history(chat_history): cleaned = [] for msg in chat_history: if isinstance(msg, dict) and isinstance(msg.get("content"), str): cleaned.append(msg) return cleaned def save_image(img: Image.Image) -> str: unique_name = str(uuid.uuid4()) + ".png" img.save(unique_name) return unique_name @spaces.GPU(duration=60, enable_queue=True) def generate_image_fn( prompt: str, negative_prompt: str = "", use_negative_prompt: bool = False, seed: int = 1, width: int = 1024, height: int = 1024, guidance_scale: float = 3, num_inference_steps: int = 25, randomize_seed: bool = False, use_resolution_binning: bool = True, num_images: int = 1, progress=gr.Progress(track_tqdm=True), ): seed = int(randomize_seed_fn(seed, randomize_seed)) generator = torch.Generator(device=device).manual_seed(seed) options = { "prompt": [prompt] * num_images, "negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None, "width": width, "height": height, "guidance_scale": guidance_scale, "num_inference_steps": num_inference_steps, "generator": generator, "output_type": "pil", } if use_resolution_binning: options["use_resolution_binning"] = True images = [] for i in range(0, num_images, 1): # Simplified batching batch_options = options.copy() batch_options["prompt"] = options["prompt"][i:i+1] if "negative_prompt" in batch_options and batch_options["negative_prompt"]: batch_options["negative_prompt"] = options["negative_prompt"][i:i+1] if device.type == "cuda": with torch.autocast("cuda", dtype=torch.float16): outputs = sd_pipe(**batch_options) else: outputs = sd_pipe(**batch_options) images.extend(outputs.images) image_paths = [save_image(img) for img in images] return image_paths, seed @spaces.GPU(duration=120, enable_queue=True) def generate_3d_fn( prompt: str, seed: int = 1, guidance_scale: float = 15.0, num_steps: int = 64, randomize_seed: bool = False, ): seed = int(randomize_seed_fn(seed, randomize_seed)) model3d = Model() glb_path = model3d.run_text(prompt, seed=seed, guidance_scale=guidance_scale, num_steps=num_steps) return glb_path, seed def detect_objects(image: np.ndarray): results = yolo_detector(image, verbose=False)[0] detections = sv.Detections.from_ultralytics(results).with_nms() box_annotator = sv.BoxAnnotator() label_annotator = sv.LabelAnnotator() annotated_image = image.copy() annotated_image = box_annotator.annotate(scene=annotated_image, detections=detections) annotated_image = label_annotator.annotate(scene=annotated_image, detections=detections) return Image.fromarray(annotated_image) # Chat Generation Function with @phi4 Added @spaces.GPU def generate( input_dict: dict, chat_history: list[dict], max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2, ): text = input_dict["text"] files = input_dict.get("files", []) # --- 3D Generation --- if text.strip().lower().startswith("@3d"): prompt = text[len("@3d"):].strip() yield "๐ŸŒ€ Generating 3D mesh GLB file..." glb_path, used_seed = generate_3d_fn( prompt=prompt, seed=1, guidance_scale=15.0, num_steps=64, randomize_seed=True, ) static_folder = os.path.join(os.getcwd(), "static") if not os.path.exists(static_folder): os.makedirs(static_folder) new_filename = f"mesh_{uuid.uuid4()}.glb" new_filepath = os.path.join(static_folder, new_filename) shutil.copy(glb_path, new_filepath) yield gr.File(new_filepath) return # --- Image Generation --- if text.strip().lower().startswith("@image"): prompt = text[len("@image"):].strip() yield "๐Ÿชง Generating image..." image_paths, used_seed = generate_image_fn( prompt=prompt, seed=1, randomize_seed=True, num_images=1, ) yield gr.Image(image_paths[0]) return # --- Web Search/Visit --- if text.strip().lower().startswith("@web"): web_command = text[len("@web"):].strip() if web_command.lower().startswith("visit"): url = web_command[len("visit"):].strip() yield "๐ŸŒ Visiting webpage..." visitor = VisitWebpageTool() content = visitor.forward(url) yield content else: query = web_command yield "๐Ÿงค Performing web search..." searcher = DuckDuckGoSearchTool() results = searcher.forward(query) yield results return # --- rAgent Reasoning --- if text.strip().lower().startswith("@ragent"): prompt = text[len("@ragent"):].strip() yield "๐Ÿ“ Initiating reasoning chain..." for partial in ragent_reasoning(prompt, clean_chat_history(chat_history)): yield partial return # --- YOLO Object Detection --- if text.strip().lower().startswith("@yolo"): yield "๐Ÿ” Running object detection..." if not files or len(files) == 0: yield "Error: Please attach an image for YOLO." return input_file = files[0] try: pil_image = Image.open(input_file) except Exception as e: yield f"Error loading image: {str(e)}" return np_image = np.array(pil_image) result_img = detect_objects(np_image) yield gr.Image(result_img) return # --- Phi-4 Multimodal Branch --- if text.strip().lower().startswith("@phi4"): parts = text[len("@phi4"):].strip().split(maxsplit=1) if len(parts) < 2: yield "Error: Specify input type and question, e.g., '@phi4 image What is this?'" return input_type = parts[0].lower() question = parts[1] if input_type not in ["image", "audio"]: yield "Error: Input type must be 'image' or 'audio'." return if not files or len(files) == 0: yield "Error: Please attach a file for Phi-4 processing." return if len(files) > 1: yield "Warning: Multiple files attached. Using the first one." file_input = files[0] try: if input_type == "image": prompt = f'<|user|><|image_1|>{question}<|end|><|assistant|>' image = Image.open(file_input) inputs = phi4_processor(text=prompt, images=image, return_tensors='pt').to(phi4_model.device) elif input_type == "audio": prompt = f'<|user|><|audio_1|>{question}<|end|><|assistant|>' audio, samplerate = sf.read(file_input) inputs = phi4_processor(text=prompt, audios=[(audio, samplerate)], return_tensors='pt').to(phi4_model.device) streamer = TextIteratorStreamer(phi4_processor, skip_prompt=True, skip_special_tokens=True) generation_kwargs = { **inputs, "streamer": streamer, "max_new_tokens": max_new_tokens, } thread = Thread(target=phi4_model.generate, kwargs=generation_kwargs) thread.start() buffer = "" yield "๐Ÿค” Thinking..." for new_text in streamer: buffer += new_text buffer = buffer.replace("<|im_end|>", "") time.sleep(0.01) yield buffer except Exception as e: yield f"Error processing file: {str(e)}" return # --- Text and TTS Branch --- tts_prefix = "@tts" is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3)) voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None) if is_tts and voice_index: voice = TTS_VOICES[voice_index - 1] text = text.replace(f"{tts_prefix}{voice_index}", "").strip() conversation = [{"role": "user", "content": text}] else: voice = None text = text.replace(tts_prefix, "").strip() conversation = clean_chat_history(chat_history) conversation.append({"role": "user", "content": text}) if files: images = [load_image(image) for image in files] messages = [{ "role": "user", "content": [ *[{"type": "image", "image": image} for image in images], {"type": "text", "text": text}, ] }] prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True).to("cuda") streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens} thread = Thread(target=model_m.generate, kwargs=generation_kwargs) thread.start() buffer = "" yield "๐Ÿค” Thinking..." for new_text in streamer: buffer += new_text buffer = buffer.replace("<|im_end|>", "") time.sleep(0.01) yield buffer else: input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt") if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input to {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) generation_kwargs = { "input_ids": input_ids, "streamer": streamer, "max_new_tokens": max_new_tokens, "do_sample": True, "top_p": top_p, "top_k": top_k, "temperature": temperature, "num_beams": 1, "repetition_penalty": repetition_penalty, } t = Thread(target=model.generate, kwargs=generation_kwargs) t.start() outputs = [] for new_text in streamer: outputs.append(new_text) yield "".join(outputs) final_response = "".join(outputs) yield final_response if is_tts and voice: output_file = asyncio.run(text_to_speech(final_response, voice)) yield gr.Audio(output_file, autoplay=True) # Gradio Interface DESCRIPTION = """ # Agent Dino ๐ŸŒ  Multimodal chatbot with text, image, audio, 3D generation, web search, reasoning, and object detection. """ css = ''' h1 { text-align: center; } #duplicate-button { margin: auto; color: #fff; background: #1565c0; border-radius: 100vh; } ''' demo = gr.ChatInterface( fn=generate, additional_inputs=[ gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS), gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6), gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=0.9), gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50), gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2), ], examples=[ ["@tts2 What causes rainbows to form?"], ["@image Chocolate dripping from a donut"], ["@3d A birthday cupcake with cherry"], [{"text": "Summarize the letter", "files": ["examples/1.png"]}], [{"text": "@yolo", "files": ["examples/yolo.jpeg"]}], ["@rAgent Explain how a binary search algorithm works."], ["@web Is Grok-3 Beats DeepSeek-R1 at Reasoning?"], ["@tts1 Explain Tower of Hanoi"], [{"text": "@phi4 image What is shown in this image?", "files": ["examples/image.jpg"]}], [{"text": "@phi4 audio Transcribe this audio.", "files": ["examples/audio.wav"]}], ], cache_examples=False, type="messages", description=DESCRIPTION, css=css, fill_height=True, textbox=gr.MultimodalTextbox( label="Query Input", file_types=["image", "audio"], file_count="multiple", placeholder="@tts1-โ™€, @tts2-โ™‚, @image-image gen, @3d-3d mesh gen, @rAgent-coding, @web-websearch, @yolo-object detection, @phi4-multimodal, default-{text gen}{image-text-text}", ), stop_btn="Stop Generation", multimodal=True, ) if not os.path.exists("static"): os.makedirs("static") from fastapi.staticfiles import StaticFiles demo.app.mount("/static", StaticFiles(directory="static"), name="static") if __name__ == "__main__": demo.queue(max_size=20).launch(share=True)