Spaces:
Running
on
Zero
Running
on
Zero
Delete app.py
Browse files
app.py
DELETED
@@ -1,196 +0,0 @@
|
|
1 |
-
import spaces
|
2 |
-
import gradio as gr
|
3 |
-
import torch
|
4 |
-
from PIL import Image
|
5 |
-
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration, pipeline
|
6 |
-
from diffusers import DiffusionPipeline
|
7 |
-
import random
|
8 |
-
import numpy as np
|
9 |
-
import os
|
10 |
-
from qwen_vl_utils import process_vision_info
|
11 |
-
|
12 |
-
# Initialize models
|
13 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
-
dtype = torch.bfloat16
|
15 |
-
|
16 |
-
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
17 |
-
|
18 |
-
# FLUX.1-dev model
|
19 |
-
pipe = DiffusionPipeline.from_pretrained(
|
20 |
-
"black-forest-labs/FLUX.1-dev", torch_dtype=dtype, token=huggingface_token
|
21 |
-
).to(device)
|
22 |
-
|
23 |
-
# Initialize Qwen2VL model
|
24 |
-
qwen_model = Qwen2VLForConditionalGeneration.from_pretrained(
|
25 |
-
"prithivMLmods/JSONify-Flux", trust_remote_code=True, torch_dtype=torch.float16
|
26 |
-
).to(device).eval()
|
27 |
-
qwen_processor = AutoProcessor.from_pretrained("prithivMLmods/JSONify-Flux", trust_remote_code=True)
|
28 |
-
|
29 |
-
# Prompt Enhancer
|
30 |
-
enhancer_long = pipeline("summarization", model="prithivMLmods/t5-Flan-Prompt-Enhance", device=device)
|
31 |
-
|
32 |
-
MAX_SEED = np.iinfo(np.int32).max
|
33 |
-
MAX_IMAGE_SIZE = 2048
|
34 |
-
|
35 |
-
# Qwen2VL caption function – updated to request plain text caption instead of JSON
|
36 |
-
@spaces.GPU
|
37 |
-
def qwen_caption(image):
|
38 |
-
# Convert image to PIL if needed
|
39 |
-
if not isinstance(image, Image.Image):
|
40 |
-
image = Image.fromarray(image)
|
41 |
-
|
42 |
-
messages = [
|
43 |
-
{
|
44 |
-
"role": "user",
|
45 |
-
"content": [
|
46 |
-
{"type": "image", "image": image},
|
47 |
-
{"type": "text", "text": "Generate a detailed and optimized caption for the given image."},
|
48 |
-
],
|
49 |
-
}
|
50 |
-
]
|
51 |
-
|
52 |
-
text = qwen_processor.apply_chat_template(
|
53 |
-
messages, tokenize=False, add_generation_prompt=True
|
54 |
-
)
|
55 |
-
image_inputs, video_inputs = process_vision_info(messages)
|
56 |
-
inputs = qwen_processor(
|
57 |
-
text=[text],
|
58 |
-
images=image_inputs,
|
59 |
-
videos=video_inputs,
|
60 |
-
padding=True,
|
61 |
-
return_tensors="pt",
|
62 |
-
).to(device)
|
63 |
-
|
64 |
-
generated_ids = qwen_model.generate(**inputs, max_new_tokens=1024)
|
65 |
-
generated_ids_trimmed = [
|
66 |
-
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
67 |
-
]
|
68 |
-
output_text = qwen_processor.batch_decode(
|
69 |
-
generated_ids_trimmed,
|
70 |
-
skip_special_tokens=True,
|
71 |
-
clean_up_tokenization_spaces=False,
|
72 |
-
)[0]
|
73 |
-
|
74 |
-
return output_text
|
75 |
-
|
76 |
-
# Prompt Enhancer function (unchanged)
|
77 |
-
def enhance_prompt(input_prompt):
|
78 |
-
result = enhancer_long("Enhance the description: " + input_prompt)
|
79 |
-
enhanced_text = result[0]['summary_text']
|
80 |
-
return enhanced_text
|
81 |
-
|
82 |
-
@spaces.GPU
|
83 |
-
def process_workflow(image, text_prompt, use_enhancer, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
|
84 |
-
if image is not None:
|
85 |
-
if not isinstance(image, Image.Image):
|
86 |
-
image = Image.fromarray(image)
|
87 |
-
prompt = qwen_caption(image)
|
88 |
-
print(prompt)
|
89 |
-
else:
|
90 |
-
prompt = text_prompt
|
91 |
-
|
92 |
-
if use_enhancer:
|
93 |
-
prompt = enhance_prompt(prompt)
|
94 |
-
|
95 |
-
if randomize_seed:
|
96 |
-
seed = random.randint(0, MAX_SEED)
|
97 |
-
|
98 |
-
generator = torch.Generator(device=device).manual_seed(seed)
|
99 |
-
|
100 |
-
torch.cuda.empty_cache()
|
101 |
-
|
102 |
-
try:
|
103 |
-
image = pipe(
|
104 |
-
prompt=prompt,
|
105 |
-
generator=generator,
|
106 |
-
num_inference_steps=num_inference_steps,
|
107 |
-
width=width,
|
108 |
-
height=height,
|
109 |
-
guidance_scale=guidance_scale
|
110 |
-
).images[0]
|
111 |
-
except RuntimeError as e:
|
112 |
-
if "CUDA out of memory" in str(e):
|
113 |
-
raise RuntimeError("CUDA out of memory. Try reducing image size or inference steps.")
|
114 |
-
else:
|
115 |
-
raise e
|
116 |
-
|
117 |
-
return image, prompt, seed
|
118 |
-
|
119 |
-
custom_css = """
|
120 |
-
.input-group, .output-group {
|
121 |
-
|
122 |
-
}
|
123 |
-
.submit-btn {
|
124 |
-
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%) !important;
|
125 |
-
border: none !important;
|
126 |
-
color: white !important;
|
127 |
-
}
|
128 |
-
.submit-btn:hover {
|
129 |
-
background-color: #3498db !important;
|
130 |
-
}
|
131 |
-
"""
|
132 |
-
|
133 |
-
title = """<h1 align="center">FLUX.1-dev with Qwen2VL Captioner and Prompt Enhancer</h1>
|
134 |
-
<p><center>
|
135 |
-
<a href="https://huggingface.co/black-forest-labs/FLUX.1-dev" target="_blank">[FLUX.1-dev Model]</a>
|
136 |
-
<a href="https://huggingface.co/prithivMLmods/JSONify-Flux" target="_blank">[JSONify Flux Model]</a>
|
137 |
-
<a href="https://huggingface.co/prithivMLmods/t5-Flan-Prompt-Enhance" target="_blank">[Prompt Enhancer t5]</a>
|
138 |
-
<p align="center">Create long prompts from images or enhance your short prompts with prompt enhancer</p>
|
139 |
-
</center></p>
|
140 |
-
"""
|
141 |
-
|
142 |
-
with gr.Blocks(css=custom_css) as demo:
|
143 |
-
gr.HTML(title)
|
144 |
-
|
145 |
-
with gr.Sidebar(label="Parameters", open=True):
|
146 |
-
gr.Markdown(
|
147 |
-
"""
|
148 |
-
### About
|
149 |
-
|
150 |
-
#### Flux.1-Dev
|
151 |
-
FLUX.1 [dev] is a 12 billion parameter rectified flow transformer capable of generating images from text descriptions. FLUX.1 [dev] is an open-weight, guidance-distilled model for non-commercial applications. Directly distilled from FLUX.1 [pro], FLUX.1 [dev] obtains similar quality and prompt adherence capabilities, while being more efficient than a standard model of the same size.
|
152 |
-
[FLUX.1-dev Model](https://huggingface.co/black-forest-labs/FLUX.1-dev)
|
153 |
-
|
154 |
-
#### JSONify-Flux
|
155 |
-
JSONify-Flux is a multimodal image-text-text model trained on a dataset of FLUX-generated images with context-rich captions based on the Qwen2VL architecture. The JSON-based instruction has been manually removed to avoid JSON format captions.
|
156 |
-
[JSONify-Flux Model](https://huggingface.co/prithivMLmods/JSONify-Flux)
|
157 |
-
|
158 |
-
#### t5-Flan-Prompt-Enhance
|
159 |
-
t5-Flan-Prompt-Enhance is a prompt summarization model that enriches synthetic FLUX prompts with more detailed descriptions.
|
160 |
-
[t5-Flan-Prompt-Enhance Model](https://huggingface.co/prithivMLmods/t5-Flan-Prompt-Enhance)
|
161 |
-
"""
|
162 |
-
)
|
163 |
-
|
164 |
-
with gr.Row():
|
165 |
-
with gr.Column(scale=1):
|
166 |
-
with gr.Group(elem_classes="input-group"):
|
167 |
-
input_image = gr.Image(label="Input Image (Qwen2VL Captioner)")
|
168 |
-
|
169 |
-
with gr.Accordion("Advanced Settings", open=False):
|
170 |
-
text_prompt = gr.Textbox(label="Text Prompt (optional, used if no image is uploaded)")
|
171 |
-
use_enhancer = gr.Checkbox(label="Use Prompt Enhancer", value=False)
|
172 |
-
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
173 |
-
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
174 |
-
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512)
|
175 |
-
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512)
|
176 |
-
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=15, step=0.1, value=3.5)
|
177 |
-
num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=32)
|
178 |
-
|
179 |
-
generate_btn = gr.Button("Generate Image & Prompt", elem_classes="submit-btn")
|
180 |
-
|
181 |
-
with gr.Column(scale=1):
|
182 |
-
with gr.Group(elem_classes="output-group"):
|
183 |
-
output_image = gr.Image(label="result", elem_id="gallery", show_label=False)
|
184 |
-
final_prompt = gr.Textbox(label="prompt")
|
185 |
-
used_seed = gr.Number(label="seed")
|
186 |
-
|
187 |
-
generate_btn.click(
|
188 |
-
fn=process_workflow,
|
189 |
-
inputs=[
|
190 |
-
input_image, text_prompt, use_enhancer, seed, randomize_seed,
|
191 |
-
width, height, guidance_scale, num_inference_steps
|
192 |
-
],
|
193 |
-
outputs=[output_image, final_prompt, used_seed]
|
194 |
-
)
|
195 |
-
|
196 |
-
demo.launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|