Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
import torch | |
from diffusers import AutoencoderKL, TCDScheduler | |
from diffusers.models.model_loading_utils import load_state_dict | |
# Removed ImageSlider import | |
from huggingface_hub import hf_hub_download | |
# Ensure these custom modules are accessible in the environment | |
# If running locally, they should be in the same directory or installed | |
try: | |
from controlnet_union import ControlNetModel_Union | |
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline | |
except ImportError as e: | |
print(f"Error importing custom modules: {e}") | |
print("Please ensure 'controlnet_union.py' and 'pipeline_fill_sd_xl.py' are in the working directory or installed.") | |
# Optionally, try installing if running in a suitable environment | |
# import os | |
# os.system("pip install git+https://github.com/UNION-AI-Research/FILL-Context-Aware-Outpainting.git") # Or wherever the package is hosted | |
# Re-try import might be needed depending on environment setup | |
exit() | |
from PIL import Image, ImageDraw | |
import numpy as np | |
import os # For checking example files | |
# --- Model Loading --- | |
# Use environment variable for model cache if needed | |
# HUGGINGFACE_HUB_CACHE = os.environ.get("HUGGINGFACE_HUB_CACHE", None) | |
try: | |
config_file = hf_hub_download( | |
"xinsir/controlnet-union-sdxl-1.0", | |
filename="config_promax.json", | |
# cache_dir=HUGGINGFACE_HUB_CACHE | |
) | |
config = ControlNetModel_Union.load_config(config_file) | |
controlnet_model = ControlNetModel_Union.from_config(config) | |
model_file = hf_hub_download( | |
"xinsir/controlnet-union-sdxl-1.0", | |
filename="diffusion_pytorch_model_promax.safetensors", | |
# cache_dir=HUGGINGFACE_HUB_CACHE | |
) | |
sstate_dict = load_state_dict(model_file) | |
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model( | |
controlnet_model, sstate_dict, model_file, "xinsir/controlnet-union-sdxl-1.0" | |
) | |
model.to(device="cuda", dtype=torch.float16) | |
print("ControlNet loaded successfully.") | |
vae = AutoencoderKL.from_pretrained( | |
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16, # cache_dir=HUGGINGFACE_HUB_CACHE | |
).to("cuda") | |
print("VAE loaded successfully.") | |
pipe = StableDiffusionXLFillPipeline.from_pretrained( | |
"SG161222/RealVisXL_V5.0_Lightning", | |
torch_dtype=torch.float16, | |
vae=vae, | |
controlnet=model, | |
variant="fp16", | |
# cache_dir=HUGGINGFACE_HUB_CACHE | |
).to("cuda") | |
print("Pipeline loaded successfully.") | |
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config) | |
print("Scheduler configured.") | |
except Exception as e: | |
print(f"Error during model loading: {e}") | |
raise e | |
# --- Helper Functions --- | |
def can_expand(source_width, source_height, target_width, target_height, alignment): | |
"""Checks if the image can be expanded based on the alignment.""" | |
if alignment in ("Left", "Right") and source_width >= target_width: | |
return False | |
if alignment in ("Top", "Bottom") and source_height >= target_height: | |
return False | |
return True | |
def prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom): | |
if image is None: | |
raise gr.Error("Input image not provided.") | |
try: | |
target_size = (width, height) | |
# Calculate the scaling factor to fit the image within the target size | |
scale_factor = min(target_size[0] / image.width, target_size[1] / image.height) | |
new_width = int(image.width * scale_factor) | |
new_height = int(image.height * scale_factor) | |
# Resize the source image to fit within target size | |
source = image.resize((new_width, new_height), Image.LANCZOS) | |
# Apply resize option using percentages | |
if resize_option == "Full": | |
resize_percentage = 100 | |
elif resize_option == "50%": | |
resize_percentage = 50 | |
elif resize_option == "33%": | |
resize_percentage = 33 | |
elif resize_option == "25%": | |
resize_percentage = 25 | |
elif resize_option == "Custom": | |
resize_percentage = custom_resize_percentage | |
else: | |
raise ValueError(f"Invalid resize option: {resize_option}") | |
# Calculate new dimensions based on percentage | |
resize_factor = resize_percentage / 100 | |
new_width = int(source.width * resize_factor) | |
new_height = int(source.height * resize_factor) | |
# Ensure minimum size of 64 pixels | |
new_width = max(new_width, 64) | |
new_height = max(new_height, 64) | |
# Ensure dimensions fit within target (can happen if original image is tiny and resize % is large) | |
new_width = min(new_width, target_size[0]) | |
new_height = min(new_height, target_size[1]) | |
# Resize the image | |
source = source.resize((new_width, new_height), Image.LANCZOS) | |
# Calculate the overlap in pixels based on the percentage | |
overlap_x = int(new_width * (overlap_percentage / 100)) | |
overlap_y = int(new_height * (overlap_percentage / 100)) | |
# Ensure minimum overlap of 1 pixel if overlap is enabled, otherwise 0 | |
overlap_x = max(overlap_x, 1) if overlap_left or overlap_right else 0 | |
overlap_y = max(overlap_y, 1) if overlap_top or overlap_bottom else 0 | |
# Calculate margins based on alignment | |
if alignment == "Middle": | |
margin_x = (target_size[0] - new_width) // 2 | |
margin_y = (target_size[1] - new_height) // 2 | |
elif alignment == "Left": | |
margin_x = 0 | |
margin_y = (target_size[1] - new_height) // 2 | |
elif alignment == "Right": | |
margin_x = target_size[0] - new_width | |
margin_y = (target_size[1] - new_height) // 2 | |
elif alignment == "Top": | |
margin_x = (target_size[0] - new_width) // 2 | |
margin_y = 0 | |
elif alignment == "Bottom": | |
margin_x = (target_size[0] - new_width) // 2 | |
margin_y = target_size[1] - new_height | |
else: | |
raise ValueError(f"Invalid alignment: {alignment}") | |
# Adjust margins to ensure image is fully within bounds (should be redundant with min check above) | |
margin_x = max(0, min(margin_x, target_size[0] - new_width)) | |
margin_y = max(0, min(margin_y, target_size[1] - new_height)) | |
# Create a new background image and paste the resized source image | |
background = Image.new('RGB', target_size, (255, 255, 255)) # White background | |
background.paste(source, (margin_x, margin_y)) | |
# Create the mask (initially all black - meaning keep everything) | |
mask_np = np.zeros(target_size[::-1], dtype=np.uint8) # Use numpy for easier slicing [::-1] for (height, width) | |
# Calculate the coordinates of the *source image* area within the target canvas | |
source_left = margin_x | |
source_top = margin_y | |
source_right = margin_x + new_width | |
source_bottom = margin_y + new_height | |
# Calculate the coordinates of the *unmasked* area (area to keep from source) | |
unmasked_left = source_left + overlap_x if overlap_left else source_left | |
unmasked_top = source_top + overlap_y if overlap_top else source_top | |
unmasked_right = source_right - overlap_x if overlap_right else source_right | |
unmasked_bottom = source_bottom - overlap_y if overlap_bottom else source_bottom | |
# Special handling for edge alignments to ensure the edge itself is kept if overlap disabled | |
if alignment == "Left" and not overlap_left: | |
unmasked_left = source_left | |
if alignment == "Right" and not overlap_right: | |
unmasked_right = source_right | |
if alignment == "Top" and not overlap_top: | |
unmasked_top = source_top | |
if alignment == "Bottom" and not overlap_bottom: | |
unmasked_bottom = source_bottom | |
# Ensure coordinates are valid and clipped to the source image area within the canvas | |
unmasked_left = max(source_left, min(unmasked_left, source_right)) | |
unmasked_top = max(source_top, min(unmasked_top, source_bottom)) | |
unmasked_right = max(source_left, min(unmasked_right, source_right)) | |
unmasked_bottom = max(source_top, min(unmasked_bottom, source_bottom)) | |
# Create the final mask: White (255) = Area to inpaint/outpaint, Black (0) = Area to keep | |
final_mask_np = np.ones(target_size[::-1], dtype=np.uint8) * 255 # Start with all white (change everything) | |
if unmasked_right > unmasked_left and unmasked_bottom > unmasked_top: | |
# Set the area to keep (calculated unmasked rectangle) to black (0) | |
final_mask_np[unmasked_top:unmasked_bottom, unmasked_left:unmasked_right] = 0 | |
mask = Image.fromarray(final_mask_np) | |
return background, mask | |
except Exception as e: | |
print(f"Error in prepare_image_and_mask: {e}") | |
raise gr.Error(f"Failed to prepare image and mask: {e}") | |
def preview_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom): | |
if image is None: | |
return None # Or return a placeholder image/message | |
try: | |
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom) | |
# Create a preview image showing the mask | |
preview = background.copy().convert('RGBA') | |
# Create a semi-transparent red overlay for the masked (inpainting/outpainting) area | |
red_overlay = Image.new('RGBA', background.size, (255, 0, 0, 100)) # 100 alpha (~40% opacity) | |
# The mask is white (255) where outpainting happens. Use this directly. | |
preview.paste(red_overlay, (0, 0), mask) # Paste red where mask is white | |
return preview | |
except Exception as e: | |
print(f"Error during preview generation: {e}") | |
# Return the original background or an error placeholder | |
if 'background' in locals(): | |
return background.convert('RGBA') | |
else: | |
return Image.new('RGBA', (width, height), (200, 200, 200, 255)) # Grey placeholder | |
# Adjusted duration slightly | |
def infer(image, width, height, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom, progress=gr.Progress(track_tqdm=True)): | |
if image is None: | |
raise gr.Error("Please provide an input image.") | |
try: | |
# --- Preparation --- | |
progress(0.1, desc="Preparing image and mask...") | |
original_alignment = alignment | |
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom) | |
# --- Alignment Check & Correction --- | |
# Get dimensions *after* initial placement and resize | |
pasted_source_img_width = int(image.width * min(width / image.width, height / image.height) * (custom_resize_percentage if resize_option=='Custom' else {'Full':100, '50%':50, '33%':33, '25%':25}[resize_option])/100) | |
pasted_source_img_height = int(image.height * min(width / image.width, height / image.height) * (custom_resize_percentage if resize_option=='Custom' else {'Full':100, '50%':50, '33%':33, '25%':25}[resize_option])/100) | |
pasted_source_img_width = max(64, min(pasted_source_img_width, width)) | |
pasted_source_img_height = max(64, min(pasted_source_img_height, height)) | |
needs_reprepare = False | |
if alignment in ("Left", "Right") and pasted_source_img_width >= width: | |
print(f"Warning: Source width ({pasted_source_img_width}) >= target width ({width}) with {alignment} alignment. Forcing Middle alignment.") | |
alignment = "Middle" | |
needs_reprepare = True | |
if alignment in ("Top", "Bottom") and pasted_source_img_height >= height: | |
print(f"Warning: Source height ({pasted_source_img_height}) >= target height ({height}) with {alignment} alignment. Forcing Middle alignment.") | |
alignment = "Middle" | |
needs_reprepare = True | |
if needs_reprepare and alignment != original_alignment: | |
print("Re-preparing mask due to alignment change.") | |
progress(0.15, desc="Re-preparing mask for Middle alignment...") | |
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom) | |
# ControlNet expects the image with the *original* content visible in the non-masked area | |
cnet_image = background.copy() | |
# In some ControlNet inpainting setups, you might mask the control image too, | |
# but Union ControlNet Fill often works well with the unmasked source pasted onto the background. | |
# cnet_image.paste(0, mask=ImageOps.invert(mask)) # Optional: Black out masked area in CNet image | |
# --- Prompt Encoding --- | |
progress(0.2, desc="Encoding prompt...") | |
final_prompt = f"{prompt_input}, high quality, 4k" if prompt_input else "high quality, 4k" # Add default tags if no prompt | |
negative_prompt = "low quality, blurry, noisy, text, words, letters, watermark, signature, username, artist name, deformed, distorted, disfigured, bad anatomy, extra limbs, missing limbs" | |
# Note: TCD/Lightning pipelines often work better *without* explicit negative prompts encoded | |
# Try encoding only the positive prompt first | |
( | |
prompt_embeds, | |
_, # negative_prompt_embeds (set to None or handle differently for TCD) | |
pooled_prompt_embeds, | |
_, # negative_pooled_prompt_embeds | |
) = pipe.encode_prompt(final_prompt, "cuda", False) # do_classifier_free_guidance=False for TCD | |
# --- Inference --- | |
progress(0.3, desc="Starting diffusion process...") | |
print(f"Running inference with {num_inference_steps} steps...") | |
pipeline_output = pipe( | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=None, # Pass None for TCD/Lightning | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
negative_pooled_prompt_embeds=None, # Pass None for TCD/Lightning | |
image=background, # Initial state for masked area (background with source) | |
mask_image=mask, # Mask (white = change) | |
control_image=cnet_image, # ControlNet input | |
num_inference_steps=num_inference_steps, | |
guidance_scale=0.0, # Crucial for TCD/Lightning | |
controlnet_conditioning_scale=0.8, # Default for FILL pipeline, adjust if needed | |
output_type="pil" # Ensure PIL output | |
# Add tqdm=True if supported by the custom pipeline and using gr.Progress without track_tqdm | |
) | |
# --- Process Output --- | |
progress(0.9, desc="Processing results...") | |
# Check if the pipeline returned a standard output object or a generator | |
output_image = None | |
if hasattr(pipeline_output, 'images'): # Standard diffusers output | |
print("Pipeline returned a standard output object.") | |
if len(pipeline_output.images) > 0: | |
output_image = pipeline_output.images[0] | |
else: | |
raise ValueError("Pipeline output contained no images.") | |
# Check if it's iterable (generator) - less likely with direct call and output_type='pil' but good practice | |
elif hasattr(pipeline_output, '__iter__') and not isinstance(pipeline_output, dict): | |
print("Pipeline returned a generator, iterating to get the final image.") | |
last_item = None | |
for item in pipeline_output: | |
last_item = item | |
# Try to extract image from the last yielded item (structure can vary) | |
if isinstance(last_item, tuple) and len(last_item) > 0 and isinstance(last_item[0], Image.Image): | |
output_image = last_item[0] | |
elif isinstance(last_item, dict) and 'images' in last_item and len(last_item['images']) > 0: | |
output_image = last_item['images'][0] | |
elif isinstance(last_item, Image.Image): | |
output_image = last_item | |
elif hasattr(last_item, 'images') and len(last_item.images) > 0: # Handle case where object yielded early | |
output_image = last_item.images[0] | |
if output_image is None: | |
raise ValueError("Pipeline generator did not yield a valid final image structure.") | |
else: | |
raise TypeError(f"Unexpected pipeline output type: {type(pipeline_output)}. Cannot extract image.") | |
print("Inference complete.") | |
progress(1.0, desc="Done!") | |
return output_image | |
except Exception as e: | |
print(f"Error during inference: {e}") | |
import traceback | |
traceback.print_exc() # Print full traceback to console/logs | |
raise gr.Error(f"Inference failed: {e}") | |
def clear_result(*args): | |
"""Clears the result Image and related components.""" | |
updates = { | |
result: gr.update(value=None), | |
use_as_input_button: gr.update(visible=False), | |
} | |
# If preview image is passed as an arg, clear it too | |
if len(args) > 0 and isinstance(args[0], gr.Image): | |
updates[args[0]] = gr.update(value=None) # Assuming preview_image is the first optional arg | |
return updates | |
# --- UI Helper Functions --- | |
def preload_presets(target_ratio, ui_width, ui_height): | |
"""Updates the width and height sliders based on the selected aspect ratio.""" | |
settings_update = gr.update() # Default: no change to accordion state | |
if target_ratio == "9:16": | |
changed_width = 720 | |
changed_height = 1280 | |
elif target_ratio == "16:9": | |
changed_width = 1280 | |
changed_height = 720 | |
elif target_ratio == "1:1": | |
changed_width = 1024 | |
changed_height = 1024 | |
elif target_ratio == "Custom": | |
changed_width = ui_width # Keep current slider values | |
changed_height = ui_height | |
settings_update = gr.update(open=True) # Open accordion for custom | |
else: # Should not happen | |
changed_width = ui_width | |
changed_height = ui_height | |
return changed_width, changed_height, settings_update | |
def select_the_right_preset(user_width, user_height): | |
"""Updates the radio button based on the current slider values.""" | |
if user_width == 720 and user_height == 1280: | |
return "9:16" | |
elif user_width == 1280 and user_height == 720: | |
return "16:9" | |
elif user_width == 1024 and user_height == 1024: | |
return "1:1" | |
else: | |
return "Custom" | |
def toggle_custom_resize_slider(resize_option): | |
"""Shows/hides the custom resize slider.""" | |
return gr.update(visible=(resize_option == "Custom")) | |
def update_history(new_image, history): | |
"""Updates the history gallery with the new image.""" | |
if not isinstance(new_image, Image.Image): # Don't add if generation failed (None) | |
return history or [] # Return current or empty list | |
if history is None: | |
history = [] | |
history.insert(0, new_image) | |
# Limit history size (optional) | |
max_history = 12 | |
if len(history) > max_history: | |
history = history[:max_history] | |
return history | |
# --- Gradio UI Definition --- | |
css = """ | |
.gradio-container { | |
max-width: 1200px !important; /* Use max-width for responsiveness */ | |
margin: auto !important; /* Center the container */ | |
padding: 10px; /* Add some padding */ | |
} | |
h1 { text-align: center; margin-bottom: 15px;} | |
footer { display: none !important; /* More reliable way to hide footer */ } | |
/* Ensure result image takes reasonable space */ | |
#result-image img { | |
max-height: 768px; /* Adjust max height as needed */ | |
object-fit: contain; | |
width: 100%; /* Allow image to use column width */ | |
height: auto; | |
display: block; /* Prevent extra space below image */ | |
margin: auto; /* Center image within its container */ | |
} | |
#input-image img { | |
max-height: 400px; | |
object-fit: contain; | |
width: 100%; | |
height: auto; | |
display: block; | |
margin: auto; | |
} | |
#preview-image img { | |
max-height: 250px; /* Smaller preview */ | |
object-fit: contain; | |
width: 100%; | |
height: auto; | |
display: block; | |
margin: auto; | |
} | |
#history-gallery .thumbnail-item { /* Style history items */ | |
height: 100px !important; | |
overflow: hidden; /* Hide overflow */ | |
} | |
#history-gallery .gallery { | |
grid-template-rows: repeat(auto-fill, 100px) !important; | |
gap: 4px !important; /* Add small gap */ | |
} | |
#history-gallery .thumbnail-item img { | |
object-fit: contain !important; /* Ensure history previews fit */ | |
height: 100%; | |
width: 100%; | |
} | |
/* Make Checkboxes smaller and closer */ | |
.gradio-checkboxgroup .wrap { | |
gap: 0.5rem 1rem !important; /* Adjust spacing */ | |
} | |
.gradio-checkbox label span { | |
font-size: 0.9em; /* Slightly smaller label text */ | |
} | |
.gradio-checkbox input { | |
transform: scale(0.9); /* Slightly smaller checkbox */ | |
} | |
/* Style Accordion */ | |
.gradio-accordion .label-wrap { /* Target the label wrapper */ | |
border: 1px solid #e0e0e0; | |
border-radius: 5px; | |
padding: 8px 12px; | |
background-color: #f9f9f9; | |
} | |
""" | |
title = """<h1 align="center">🖼️ Diffusers Image Outpaint Lightning ⚡</h1>""" | |
# --- Example Files Handling --- | |
# Create examples directory if it doesn't exist | |
if not os.path.exists("./examples"): | |
os.makedirs("./examples") | |
# Check for example images and provide defaults or placeholders if missing | |
example_files = { | |
"ex1": "./examples/example_1.webp", | |
"ex2": "./examples/example_2.jpg", | |
"ex3": "./examples/example_3.jpg" | |
} | |
default_image_path = None # Will be set to the first available example | |
# You might want to download example images if they don't exist | |
# from huggingface_hub import hf_hub_download | |
# def download_example(repo_id, filename, local_path): | |
# if not os.path.exists(local_path): | |
# try: | |
# hf_hub_download(repo_id=repo_id, filename=filename, local_dir="./examples", local_dir_use_symlinks=False) | |
# print(f"Downloaded {filename}") | |
# except Exception as e: | |
# print(f"Failed to download example {filename}: {e}") | |
# return False # Indicate failure | |
# return os.path.exists(local_path) | |
# Example: download_example("path/to/your/example-repo", "example_1.webp", example_files["ex1"]) | |
# For now, we just check existence | |
examples_available = {key: os.path.exists(path) for key, path in example_files.items()} | |
example_list = [] | |
if examples_available["ex1"]: | |
example_list.append([example_files["ex1"], "A wide landscape view of the mountains", 1280, 720, "Middle"]) | |
if default_image_path is None: default_image_path = example_files["ex1"] | |
if examples_available["ex2"]: | |
example_list.append([example_files["ex2"], "Full body shot of the astronaut on the moon", 720, 1280, "Middle"]) | |
if default_image_path is None: default_image_path = example_files["ex2"] | |
if examples_available["ex3"]: | |
example_list.append([example_files["ex3"], "Expanding the sky and ground around the subject", 1024, 1024, "Middle"]) | |
example_list.append([example_files["ex3"], "Expanding downwards from the subject", 1024, 1024, "Top"]) | |
example_list.append([example_files["ex3"], "Expanding upwards from the subject", 1024, 1024, "Bottom"]) | |
if default_image_path is None: default_image_path = example_files["ex3"] | |
if not example_list: | |
print("Warning: No example images found in ./examples/. Examples section will be empty.") | |
# Optionally create a placeholder image | |
# placeholder = Image.new('RGB', (512, 512), color = 'grey') | |
# placeholder_path = "./examples/placeholder.png" | |
# placeholder.save(placeholder_path) | |
# example_list.append([placeholder_path, "Placeholder", 1024, 1024, "Middle"]) | |
# default_image_path = placeholder_path | |
# --- UI --- | |
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo: # Added a theme | |
gr.HTML(title) | |
with gr.Row(): | |
with gr.Column(scale=1): # Left column for inputs | |
input_image = gr.Image( | |
value=default_image_path, # Load default example | |
type="pil", | |
label="Input Image", | |
elem_id="input-image" | |
) | |
prompt_input = gr.Textbox(label="Prompt", placeholder="Describe the scene to expand (optional but recommended)...", lines=2) | |
with gr.Row(): | |
target_ratio = gr.Radio( | |
label="Target Aspect Ratio", | |
choices=["9:16", "16:9", "1:1", "Custom"], | |
value="9:16", | |
scale=2 | |
) | |
alignment_dropdown = gr.Dropdown( | |
choices=["Middle", "Left", "Right", "Top", "Bottom"], | |
value="Middle", | |
label="Align Source Image", | |
scale=1 | |
) | |
with gr.Accordion(label="Advanced settings", open=False) as settings_panel: | |
with gr.Row(): | |
width_slider = gr.Slider( | |
label="Target Width", minimum=512, maximum=2048, step=64, value=720 | |
) | |
height_slider = gr.Slider( | |
label="Target Height", minimum=512, maximum=2048, step=64, value=1280 | |
) | |
num_inference_steps = gr.Slider( | |
label="Steps (TCD/Lightning: 1-8)", minimum=1, maximum=12, step=1, value=4 | |
) | |
with gr.Group(): | |
overlap_percentage = gr.Slider( | |
label="Mask Overlap with Source (%)", minimum=0, maximum=50, value=12, step=1 | |
) | |
gr.Markdown("Select edges to overlap:", scale=0) # Add context | |
with gr.Row(elem_classes="gradio-checkboxgroup"): # Apply CSS class | |
overlap_top = gr.Checkbox(label="Top", value=True, scale=1) | |
overlap_bottom = gr.Checkbox(label="Bottom", value=True, scale=1) | |
overlap_left = gr.Checkbox(label="Left", value=True, scale=1) | |
overlap_right = gr.Checkbox(label="Right", value=True, scale=1) | |
with gr.Row(): | |
resize_option = gr.Radio( | |
label="Resize source within target", | |
choices=["Full", "50%", "33%", "25%", "Custom"], | |
value="Full", | |
scale=2 | |
) | |
custom_resize_percentage = gr.Slider( | |
label="Custom resize (%)", minimum=1, maximum=100, step=1, value=50, visible=False, scale=1 | |
) | |
preview_button = gr.Button("Preview Mask & Alignment") | |
preview_image = gr.Image(label="Mask Preview (Red = Outpaint Area)", type="pil", interactive=False, elem_id="preview-image") | |
if example_list: | |
gr.Examples( | |
examples=example_list, | |
inputs=[input_image, prompt_input, width_slider, height_slider, alignment_dropdown], | |
label="Examples (Click to load)", | |
examples_per_page=10 | |
) | |
else: | |
gr.Markdown("_(No example files found in ./examples)_") | |
run_button = gr.Button("Generate", variant="primary") | |
with gr.Column(scale=1): # Right column for output | |
result = gr.Image(label="Generated Image", type="pil", interactive=False, elem_id="result-image") | |
use_as_input_button = gr.Button("Use Result as Input Image", visible=False) | |
history_gallery = gr.Gallery( | |
label="History", columns=6, object_fit="contain", interactive=False, | |
height=110, elem_id="history-gallery" | |
) | |
# --- Event Handling --- | |
# Function to set result as input and clear result area | |
def use_output_as_input_and_clear(output_image): | |
return { | |
input_image: gr.update(value=output_image), | |
result: gr.update(value=None), # Clear result after using it | |
use_as_input_button: gr.update(visible=False) # Hide button again | |
} | |
use_as_input_button.click( | |
fn=use_output_as_input_and_clear, | |
inputs=[result], | |
outputs=[input_image, result, use_as_input_button] | |
) | |
target_ratio.change( | |
fn=preload_presets, | |
inputs=[target_ratio, width_slider, height_slider], | |
outputs=[width_slider, height_slider, settings_panel], | |
queue=False | |
) | |
width_slider.change( | |
fn=select_the_right_preset, | |
inputs=[width_slider, height_slider], | |
outputs=[target_ratio], | |
queue=False | |
) | |
height_slider.change( | |
fn=select_the_right_preset, | |
inputs=[width_slider, height_slider], | |
outputs=[target_ratio], | |
queue=False | |
) | |
resize_option.change( | |
fn=toggle_custom_resize_slider, | |
inputs=[resize_option], | |
outputs=[custom_resize_percentage], | |
queue=False | |
) | |
# Consolidate common inputs for generation | |
gen_inputs = [ | |
input_image, width_slider, height_slider, overlap_percentage, num_inference_steps, | |
resize_option, custom_resize_percentage, prompt_input, alignment_dropdown, | |
overlap_left, overlap_right, overlap_top, overlap_bottom | |
] | |
gen_outputs = [result] # Single output image | |
# Chain generation logic for Run button | |
run_trigger = run_button.click( | |
fn=clear_result, # Clear previous result first | |
inputs=[], # No inputs needed for clear | |
outputs=[result, use_as_input_button], # Components to clear/hide | |
queue=False | |
).then( | |
fn=infer, | |
inputs=gen_inputs, | |
outputs=gen_outputs, | |
) | |
# After generation finishes (successfully or not), update history and button visibility | |
run_trigger.then( | |
fn=lambda res_img, hist: update_history(res_img, hist), | |
inputs=[result, history_gallery], | |
outputs=[history_gallery], | |
queue=False # Update history immediately | |
).then( | |
# Show the 'Use as Input' button only if generation was successful (result is not None) | |
fn=lambda res_img: gr.update(visible=isinstance(res_img, Image.Image)), | |
inputs=[result], | |
outputs=[use_as_input_button], | |
queue=False # Show button immediately | |
) | |
# Chain generation logic for Enter key in Prompt textbox | |
submit_trigger = prompt_input.submit( | |
fn=clear_result, | |
inputs=[], | |
outputs=[result, use_as_input_button], | |
queue=False | |
).then( | |
fn=infer, | |
inputs=gen_inputs, | |
outputs=gen_outputs, | |
) | |
submit_trigger.then( | |
fn=lambda res_img, hist: update_history(res_img, hist), | |
inputs=[result, history_gallery], | |
outputs=[history_gallery], | |
queue=False | |
).then( | |
fn=lambda res_img: gr.update(visible=isinstance(res_img, Image.Image)), | |
inputs=[result], | |
outputs=[use_as_input_button], | |
queue=False | |
) | |
# Preview button logic | |
preview_inputs = [ | |
input_image, width_slider, height_slider, overlap_percentage, resize_option, | |
custom_resize_percentage, alignment_dropdown, overlap_left, overlap_right, | |
overlap_top, overlap_bottom | |
] | |
preview_button.click( | |
fn=preview_image_and_mask, | |
inputs=preview_inputs, | |
outputs=preview_image, | |
queue=False | |
) | |
# Launch the interface | |
demo.queue(max_size=10).launch(ssr_mode=False, show_error=True, debug=True) # Add debug=True for more logs |