File size: 22,140 Bytes
a85c4cf
 
 
f5e2b63
04cce22
03b41ea
 
11d7c13
f5e2b63
04cce22
 
 
f5e2b63
a85c4cf
 
03b41ea
04cce22
f5e2b63
04cce22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3297fb3
f5e2b63
04cce22
f5e2b63
 
 
 
 
 
04cce22
f5e2b63
 
04cce22
f5e2b63
 
03b41ea
f5e2b63
04cce22
f5e2b63
 
 
 
 
 
04cce22
 
 
 
 
 
 
ce44242
04cce22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03b41ea
04cce22
 
 
 
 
ce44242
03b41ea
 
04cce22
03b41ea
04cce22
03b41ea
04cce22
03b41ea
04cce22
03b41ea
 
 
 
 
 
 
04cce22
03b41ea
 
 
 
 
 
04cce22
03b41ea
 
04cce22
 
 
 
 
ce44242
04cce22
 
ce44242
03b41ea
 
ce44242
03b41ea
 
ce44242
04cce22
14bfced
f5e2b63
04cce22
 
ce44242
03b41ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04cce22
03b41ea
 
 
 
f5e2b63
03b41ea
f5e2b63
04cce22
 
 
 
 
 
 
03b41ea
 
 
 
04cce22
 
 
 
03b41ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5e2b63
 
 
03b41ea
f5e2b63
 
03b41ea
04cce22
 
 
 
 
03b41ea
04cce22
 
 
03b41ea
04cce22
 
 
03b41ea
04cce22
03b41ea
04cce22
 
 
03b41ea
04cce22
 
 
 
 
 
 
 
 
 
03b41ea
04cce22
 
 
 
 
 
03b41ea
ce44242
 
11d7c13
f5e2b63
03b41ea
04cce22
 
 
03b41ea
04cce22
 
 
03b41ea
 
 
 
 
 
 
 
 
 
 
 
 
56aa407
04cce22
108256c
03b41ea
 
11d7c13
108256c
 
 
 
03b41ea
108256c
 
03b41ea
 
108256c
 
 
 
03b41ea
108256c
03b41ea
108256c
 
 
03b41ea
108256c
 
 
 
ce44242
108256c
 
 
03b41ea
108256c
 
 
03b41ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
108256c
03b41ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce44242
 
108256c
 
03b41ea
 
 
 
 
108256c
03b41ea
 
108256c
 
 
03b41ea
 
 
 
 
 
 
 
 
 
 
 
 
108256c
 
03b41ea
108256c
 
 
03b41ea
ce44242
108256c
 
 
03b41ea
 
108256c
ce44242
108256c
 
 
03b41ea
108256c
 
 
03b41ea
108256c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce44242
03b41ea
 
ce44242
 
 
 
 
03b41ea
ce44242
03b41ea
108256c
03b41ea
 
ce44242
03b41ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
108256c
 
ce44242
03b41ea
108256c
03b41ea
 
 
 
 
 
ce44242
03b41ea
 
 
 
 
 
 
 
 
108256c
 
 
 
 
 
 
ce44242
108256c
e9f69e7
03b41ea
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
import gradio as gr
import spaces
import torch
from diffusers import AutoencoderKL, TCDScheduler
from diffusers.models.model_loading_utils import load_state_dict
# Remove ImageSlider import
# from gradio_imageslider import ImageSlider
from huggingface_hub import hf_hub_download

from controlnet_union import ControlNetModel_Union
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline

from PIL import Image, ImageDraw
import numpy as np

# --- Model Loading (Unchanged) ---
config_file = hf_hub_download(
    "xinsir/controlnet-union-sdxl-1.0",
    filename="config_promax.json",
)

config = ControlNetModel_Union.load_config(config_file)
controlnet_model = ControlNetModel_Union.from_config(config)
model_file = hf_hub_download(
    "xinsir/controlnet-union-sdxl-1.0",
    filename="diffusion_pytorch_model_promax.safetensors",
)

sstate_dict = load_state_dict(model_file)
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model(
    controlnet_model, sstate_dict, model_file, "xinsir/controlnet-union-sdxl-1.0"
)
model.to(device="cuda", dtype=torch.float16)
#----------------------

vae = AutoencoderKL.from_pretrained(
    "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
).to("cuda")

pipe = StableDiffusionXLFillPipeline.from_pretrained(
    "SG161222/RealVisXL_V5.0_Lightning",
    torch_dtype=torch.float16,
    vae=vae,
    controlnet=model,
    variant="fp16",
).to("cuda")

pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)

# --- Helper Functions (Mostly Unchanged) ---
def can_expand(source_width, source_height, target_width, target_height, alignment):
    """Checks if the image can be expanded based on the alignment."""
    if alignment in ("Left", "Right") and source_width >= target_width:
        return False
    if alignment in ("Top", "Bottom") and source_height >= target_height:
        return False
    return True

def prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
    target_size = (width, height)

    # Calculate the scaling factor to fit the image within the target size
    scale_factor = min(target_size[0] / image.width, target_size[1] / image.height)
    new_width = int(image.width * scale_factor)
    new_height = int(image.height * scale_factor)

    # Resize the source image to fit within target size
    source = image.resize((new_width, new_height), Image.LANCZOS)

    # Apply resize option using percentages
    if resize_option == "Full":
        resize_percentage = 100
    elif resize_option == "50%":
        resize_percentage = 50
    elif resize_option == "33%":
        resize_percentage = 33
    elif resize_option == "25%":
        resize_percentage = 25
    else:  # Custom
        resize_percentage = custom_resize_percentage

    # Calculate new dimensions based on percentage
    resize_factor = resize_percentage / 100
    new_width = int(source.width * resize_factor)
    new_height = int(source.height * resize_factor)

    # Ensure minimum size of 64 pixels
    new_width = max(new_width, 64)
    new_height = max(new_height, 64)

    # Resize the image
    source = source.resize((new_width, new_height), Image.LANCZOS)

    # Calculate the overlap in pixels based on the percentage
    overlap_x = int(new_width * (overlap_percentage / 100))
    overlap_y = int(new_height * (overlap_percentage / 100))

    # Ensure minimum overlap of 1 pixel
    overlap_x = max(overlap_x, 1)
    overlap_y = max(overlap_y, 1)

    # Calculate margins based on alignment
    if alignment == "Middle":
        margin_x = (target_size[0] - new_width) // 2
        margin_y = (target_size[1] - new_height) // 2
    elif alignment == "Left":
        margin_x = 0
        margin_y = (target_size[1] - new_height) // 2
    elif alignment == "Right":
        margin_x = target_size[0] - new_width
        margin_y = (target_size[1] - new_height) // 2
    elif alignment == "Top":
        margin_x = (target_size[0] - new_width) // 2
        margin_y = 0
    elif alignment == "Bottom":
        margin_x = (target_size[0] - new_width) // 2
        margin_y = target_size[1] - new_height

    # Adjust margins to eliminate gaps
    margin_x = max(0, min(margin_x, target_size[0] - new_width))
    margin_y = max(0, min(margin_y, target_size[1] - new_height))

    # Create a new background image and paste the resized source image
    background = Image.new('RGB', target_size, (255, 255, 255))
    background.paste(source, (margin_x, margin_y))

    # Create the mask
    mask = Image.new('L', target_size, 255)
    mask_draw = ImageDraw.Draw(mask)

    # Calculate overlap areas
    white_gaps_patch = 2 # Pixels to leave unmasked at edges if overlap is disabled for that edge

    left_overlap = margin_x + overlap_x if overlap_left else margin_x + white_gaps_patch
    right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width - white_gaps_patch
    top_overlap = margin_y + overlap_y if overlap_top else margin_y + white_gaps_patch
    bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height - white_gaps_patch

    # Adjust overlap boundaries based on alignment when specific overlap directions are *disabled*
    # This prevents unmasking the absolute edge of the canvas in alignment modes
    if alignment == "Left":
        left_overlap = margin_x + overlap_x if overlap_left else margin_x # Keep edge masked if alignment is left
    elif alignment == "Right":
        right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width # Keep edge masked
    elif alignment == "Top":
        top_overlap = margin_y + overlap_y if overlap_top else margin_y # Keep edge masked
    elif alignment == "Bottom":
        bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height # Keep edge masked

    # Ensure coordinates are within bounds
    left_overlap = max(0, left_overlap)
    top_overlap = max(0, top_overlap)
    right_overlap = min(target_size[0], right_overlap)
    bottom_overlap = min(target_size[1], bottom_overlap)

    # Draw the mask (black rectangle for the area to keep)
    if right_overlap > left_overlap and bottom_overlap > top_overlap:
        mask_draw.rectangle([
            (left_overlap, top_overlap),
            (right_overlap, bottom_overlap)
        ], fill=0) # 0 means keep this area (not masked for inpainting)

    # Invert the mask: White areas (255) will be inpainted. Black (0) is kept.
    mask = Image.fromarray(255 - np.array(mask))

    return background, mask

def preview_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
    background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)

    # Create a preview image showing the mask
    preview = background.copy().convert('RGBA')

    # Create a semi-transparent red overlay for the masked (inpainting) area
    red_overlay = Image.new('RGBA', background.size, (255, 0, 0, 100)) # 100 alpha (~40% opacity)

    # The mask is now white (255) where inpainting happens. Use this directly.
    preview.paste(red_overlay, (0, 0), mask)

    return preview

@spaces.GPU(duration=24)
def infer(image, width, height, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
    background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)

    # Ensure alignment allows expansion, default to Middle if not
    source_w, source_h = background.size # Use background size after initial resize/placement
    target_w, target_h = width, height
    if alignment in ("Left", "Right") and source_w >= target_w:
        print(f"Warning: Source width ({source_w}) >= target width ({target_w}) with {alignment} alignment. Forcing Middle alignment.")
        alignment = "Middle"
        # Re-prepare mask/background with corrected alignment if needed (optional, depends if prepare func uses alignment early)
        # background, mask = prepare_image_and_mask(...) # If needed
    if alignment in ("Top", "Bottom") and source_h >= target_h:
        print(f"Warning: Source height ({source_h}) >= target height ({target_h}) with {alignment} alignment. Forcing Middle alignment.")
        alignment = "Middle"
        # Re-prepare mask/background with corrected alignment if needed
        # background, mask = prepare_image_and_mask(...) # If needed

    # Image for ControlNet input (masked original content)
    # The pipeline expects the original image content in the non-masked area
    cnet_image = background.copy()
    # The pipeline's `image` argument is the *initial* content for the *masked* area (often noise, but here we provide the background)
    # The `mask_image` tells the pipeline *where* to perform the inpainting/outpainting.
    # The controlnet `image` needs the original content visible in the non-masked area.
    # ControlNet Union seems to work well by just passing the background with the source image pasted.

    final_prompt = f"{prompt_input} , high quality, 4k" if prompt_input else "high quality, 4k"

    (
        prompt_embeds,
        negative_prompt_embeds,
        pooled_prompt_embeds,
        negative_pooled_prompt_embeds,
    ) = pipe.encode_prompt(final_prompt, "cuda", True)

    # The pipeline call
    # Note: The pipeline expects `image` (initial state for masked area) and `mask_image`
    # The `control_image` is implicitly handled by the ControlNet attached to the pipeline
    output_image = pipe(
        prompt_embeds=prompt_embeds,
        negative_prompt_embeds=negative_prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds,
        negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
        image=background, # Provide the initial canvas state
        mask_image=mask,   # Provide the mask (white is area to change)
        control_image=cnet_image, # Pass the control image explicitly if needed by pipeline logic
        num_inference_steps=num_inference_steps,
        output_type="pil" # Ensure PIL output
    ).images[0]

    # The pipeline should have already handled the compositing based on the mask
    # If not, uncomment the paste operation below:
    # final_image = background.copy().convert("RGBA") # Start with original background
    # output_image = output_image.convert("RGBA")
    # mask_rgba = mask.convert('L').point(lambda p: 255 if p > 128 else 0) # Ensure mask is binary 0/255
    # final_image.paste(output_image, (0, 0), mask_rgba) # Paste generated content using the mask

    # Return the single final image
    return output_image


def clear_result():
    """Clears the result Image component."""
    return gr.update(value=None)

# --- UI Helper Functions (Unchanged) ---
def preload_presets(target_ratio, ui_width, ui_height):
    """Updates the width and height sliders based on the selected aspect ratio."""
    if target_ratio == "9:16":
        changed_width = 720
        changed_height = 1280
        return changed_width, changed_height, gr.update() # Close accordion
    elif target_ratio == "16:9":
        changed_width = 1280
        changed_height = 720
        return changed_width, changed_height, gr.update() # Close accordion
    elif target_ratio == "1:1":
        changed_width = 1024
        changed_height = 1024
        return changed_width, changed_height, gr.update() # Close accordion
    elif target_ratio == "Custom":
        # Don't change sliders, just open accordion
        return ui_width, ui_height, gr.update(open=True)

def select_the_right_preset(user_width, user_height):
    """Updates the radio button based on the current slider values."""
    if user_width == 720 and user_height == 1280:
        return "9:16"
    elif user_width == 1280 and user_height == 720:
        return "16:9"
    elif user_width == 1024 and user_height == 1024:
        return "1:1"
    else:
        return "Custom"

def toggle_custom_resize_slider(resize_option):
    """Shows/hides the custom resize slider."""
    return gr.update(visible=(resize_option == "Custom"))

def update_history(new_image, history):
    """Updates the history gallery with the new image."""
    if history is None:
        history = []
    # Ensure new_image is a PIL Image before adding
    if isinstance(new_image, Image.Image):
        history.insert(0, new_image)
    return history

# --- Gradio UI Definition ---
css = """
.gradio-container {
    width: 1200px !important;
    margin: auto !important; /* Center the container */
}
h1 { text-align: center; }
footer { visibility: hidden; }
/* Ensure result image takes reasonable space */
#result-image img {
    max-height: 768px; /* Adjust max height as needed */
    object-fit: contain;
    width: auto;
    height: auto;
}
#history-gallery .thumbnail-item { /* Style history items */
    height: 100px !important;
}
#history-gallery .gallery {
    grid-template-rows: repeat(auto-fill, 100px) !important;
}

"""

title = """<h1 align="center">Diffusers Image Outpaint Lightning</h1>"""

with gr.Blocks(css=css) as demo:
    with gr.Column():
        gr.HTML(title)

        with gr.Row():
            with gr.Column(scale=1): # Left column for inputs
                input_image = gr.Image(
                    type="pil",
                    label="Input Image",
                    height=400 # Give input image reasonable height
                )

                with gr.Row():
                    with gr.Column(scale=2):
                        prompt_input = gr.Textbox(label="Prompt (Optional)", placeholder="Describe the scene to expand...")
                    with gr.Column(scale=1):
                        run_button = gr.Button("Generate", variant="primary") # Make primary

                with gr.Row():
                    target_ratio = gr.Radio(
                        label="Target Ratio",
                        choices=["9:16", "16:9", "1:1", "Custom"],
                        value="9:16",
                        scale=2
                    )

                    alignment_dropdown = gr.Dropdown(
                        choices=["Middle", "Left", "Right", "Top", "Bottom"],
                        value="Middle",
                        label="Align Source Image"
                    )

                with gr.Accordion(label="Advanced settings", open=False) as settings_panel:
                    with gr.Row():
                         width_slider = gr.Slider(
                             label="Target Width",
                             minimum=512, # Lowered minimum slightly
                             maximum=2048, # Increased maximum slightly
                             step=64, # Use steps of 64 common for SD
                             value=720,
                         )
                         height_slider = gr.Slider(
                             label="Target Height",
                             minimum=512,
                             maximum=2048,
                             step=64,
                             value=1280,
                         )
                    num_inference_steps = gr.Slider(label="Steps", minimum=1, maximum=12, step=1, value=4) # TCD/Lightning allows few steps

                    with gr.Group():
                        overlap_percentage = gr.Slider(
                            label="Mask overlap (%)",
                            minimum=1,
                            maximum=50,
                            value=12, # Default overlap
                            step=1
                        )
                        with gr.Row():
                            overlap_top = gr.Checkbox(label="Top", value=True)
                            overlap_right = gr.Checkbox(label="Right", value=True)
                            overlap_bottom = gr.Checkbox(label="Bottom", value=True)
                            overlap_left = gr.Checkbox(label="Left", value=True)


                    with gr.Row():
                        resize_option = gr.Radio(
                            label="Resize input within target",
                            choices=["Full", "50%", "33%", "25%", "Custom"],
                            value="Full"
                        )
                        custom_resize_percentage = gr.Slider(
                            label="Custom resize (%)",
                            minimum=1,
                            maximum=100,
                            step=1,
                            value=50,
                            visible=False # Initially hidden
                        )

                    preview_button = gr.Button("Preview Mask & Alignment")
                    preview_image = gr.Image(label="Mask Preview (Red = Outpaint Area)", type="pil", interactive=False)


                gr.Examples(
                    examples=[
                        ["./examples/example_1.webp", "A wide landscape view of the mountains", 1280, 720, "Middle"],
                        ["./examples/example_2.jpg", "Full body shot of the astronaut on the moon", 720, 1280, "Middle"],
                        ["./examples/example_3.jpg", "Expanding the sky and ground around the subject", 1024, 1024, "Middle"],
                         ["./examples/example_3.jpg", "Expanding downwards from the subject", 1024, 1024, "Top"], # Align subject Top
                         ["./examples/example_3.jpg", "Expanding upwards from the subject", 1024, 1024, "Bottom"], # Align subject Bottom
                    ],
                    inputs=[input_image, prompt_input, width_slider, height_slider, alignment_dropdown],
                    label="Examples (Click to load)"
                )


            with gr.Column(scale=1): # Right column for output
                # Replace ImageSlider with gr.Image
                result = gr.Image(label="Generated Image", type="pil", interactive=False, elem_id="result-image")
                use_as_input_button = gr.Button("Use Result as Input Image", visible=False) # Initially hidden

                history_gallery = gr.Gallery(
                    label="History",
                    columns=6,
                    object_fit="contain",
                    interactive=False,
                    height=110, # Fixed height for the row
                    elem_id="history-gallery"
                )


    # --- Event Handling ---

    def use_output_as_input(output_image):
        """Sets the generated output as the new input image."""
        # output_image is now the single final image from gr.Image
        return gr.update(value=output_image)

    use_as_input_button.click(
        fn=use_output_as_input,
        inputs=[result], # Input is the result image component
        outputs=[input_image] # Output updates the input image component
    )

    target_ratio.change(
        fn=preload_presets,
        inputs=[target_ratio, width_slider, height_slider],
        outputs=[width_slider, height_slider, settings_panel], # Also control accordion state
        queue=False
    )

    # Link sliders back to the ratio selector
    width_slider.change(
        fn=select_the_right_preset,
        inputs=[width_slider, height_slider],
        outputs=[target_ratio],
        queue=False
    )
    height_slider.change(
        fn=select_the_right_preset,
        inputs=[width_slider, height_slider],
        outputs=[target_ratio],
        queue=False
    )

    resize_option.change(
        fn=toggle_custom_resize_slider,
        inputs=[resize_option],
        outputs=[custom_resize_percentage],
        queue=False
    )

    # Consolidate common inputs for generation
    gen_inputs = [
        input_image, width_slider, height_slider, overlap_percentage, num_inference_steps,
        resize_option, custom_resize_percentage, prompt_input, alignment_dropdown,
        overlap_left, overlap_right, overlap_top, overlap_bottom
    ]

    # Chain generation logic
    run_button.click(
        fn=clear_result,
        inputs=None,
        outputs=[result], # Clear the single image output
        queue=False # Run clearing immediately
    ).then(
        fn=infer,
        inputs=gen_inputs,
        outputs=[result], # Output the single image to the result component
    ).then(
        # Update history with the single result image
        fn=lambda res_img, hist: update_history(res_img, hist),
        inputs=[result, history_gallery],
        outputs=[history_gallery],
        queue=False # Update history immediately after generation
    ).then(
        # Show the 'Use as Input' button
        fn=lambda: gr.update(visible=True),
        inputs=None,
        outputs=[use_as_input_button],
        queue=False # Show button immediately
    )

    prompt_input.submit(
         fn=clear_result,
        inputs=None,
        outputs=[result],
        queue=False
    ).then(
        fn=infer,
        inputs=gen_inputs,
        outputs=[result],
    ).then(
        fn=lambda res_img, hist: update_history(res_img, hist),
        inputs=[result, history_gallery],
        outputs=[history_gallery],
         queue=False
    ).then(
        fn=lambda: gr.update(visible=True),
        inputs=None,
        outputs=[use_as_input_button],
        queue=False
    )

    preview_button.click(
        fn=preview_image_and_mask,
        inputs=[input_image, width_slider, height_slider, overlap_percentage, resize_option, custom_resize_percentage, alignment_dropdown,
                overlap_left, overlap_right, overlap_top, overlap_bottom],
        outputs=preview_image,
        queue=False # Preview should be fast
    )

demo.queue(max_size=10).launch(ssr_mode=False, show_error=True) # Removed share=False for potential Hugging Face Spaces use