Spaces:
Running
on
Zero
Running
on
Zero
File size: 22,140 Bytes
a85c4cf f5e2b63 04cce22 03b41ea 11d7c13 f5e2b63 04cce22 f5e2b63 a85c4cf 03b41ea 04cce22 f5e2b63 04cce22 3297fb3 f5e2b63 04cce22 f5e2b63 04cce22 f5e2b63 04cce22 f5e2b63 03b41ea f5e2b63 04cce22 f5e2b63 04cce22 ce44242 04cce22 03b41ea 04cce22 ce44242 03b41ea 04cce22 03b41ea 04cce22 03b41ea 04cce22 03b41ea 04cce22 03b41ea 04cce22 03b41ea 04cce22 03b41ea 04cce22 ce44242 04cce22 ce44242 03b41ea ce44242 03b41ea ce44242 04cce22 14bfced f5e2b63 04cce22 ce44242 03b41ea 04cce22 03b41ea f5e2b63 03b41ea f5e2b63 04cce22 03b41ea 04cce22 03b41ea f5e2b63 03b41ea f5e2b63 03b41ea 04cce22 03b41ea 04cce22 03b41ea 04cce22 03b41ea 04cce22 03b41ea 04cce22 03b41ea 04cce22 03b41ea 04cce22 03b41ea ce44242 11d7c13 f5e2b63 03b41ea 04cce22 03b41ea 04cce22 03b41ea 56aa407 04cce22 108256c 03b41ea 11d7c13 108256c 03b41ea 108256c 03b41ea 108256c 03b41ea 108256c 03b41ea 108256c 03b41ea 108256c ce44242 108256c 03b41ea 108256c 03b41ea 108256c 03b41ea ce44242 108256c 03b41ea 108256c 03b41ea 108256c 03b41ea 108256c 03b41ea 108256c 03b41ea ce44242 108256c 03b41ea 108256c ce44242 108256c 03b41ea 108256c 03b41ea 108256c ce44242 03b41ea ce44242 03b41ea ce44242 03b41ea 108256c 03b41ea ce44242 03b41ea 108256c ce44242 03b41ea 108256c 03b41ea ce44242 03b41ea 108256c ce44242 108256c e9f69e7 03b41ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 |
import gradio as gr
import spaces
import torch
from diffusers import AutoencoderKL, TCDScheduler
from diffusers.models.model_loading_utils import load_state_dict
# Remove ImageSlider import
# from gradio_imageslider import ImageSlider
from huggingface_hub import hf_hub_download
from controlnet_union import ControlNetModel_Union
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline
from PIL import Image, ImageDraw
import numpy as np
# --- Model Loading (Unchanged) ---
config_file = hf_hub_download(
"xinsir/controlnet-union-sdxl-1.0",
filename="config_promax.json",
)
config = ControlNetModel_Union.load_config(config_file)
controlnet_model = ControlNetModel_Union.from_config(config)
model_file = hf_hub_download(
"xinsir/controlnet-union-sdxl-1.0",
filename="diffusion_pytorch_model_promax.safetensors",
)
sstate_dict = load_state_dict(model_file)
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model(
controlnet_model, sstate_dict, model_file, "xinsir/controlnet-union-sdxl-1.0"
)
model.to(device="cuda", dtype=torch.float16)
#----------------------
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
).to("cuda")
pipe = StableDiffusionXLFillPipeline.from_pretrained(
"SG161222/RealVisXL_V5.0_Lightning",
torch_dtype=torch.float16,
vae=vae,
controlnet=model,
variant="fp16",
).to("cuda")
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
# --- Helper Functions (Mostly Unchanged) ---
def can_expand(source_width, source_height, target_width, target_height, alignment):
"""Checks if the image can be expanded based on the alignment."""
if alignment in ("Left", "Right") and source_width >= target_width:
return False
if alignment in ("Top", "Bottom") and source_height >= target_height:
return False
return True
def prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
target_size = (width, height)
# Calculate the scaling factor to fit the image within the target size
scale_factor = min(target_size[0] / image.width, target_size[1] / image.height)
new_width = int(image.width * scale_factor)
new_height = int(image.height * scale_factor)
# Resize the source image to fit within target size
source = image.resize((new_width, new_height), Image.LANCZOS)
# Apply resize option using percentages
if resize_option == "Full":
resize_percentage = 100
elif resize_option == "50%":
resize_percentage = 50
elif resize_option == "33%":
resize_percentage = 33
elif resize_option == "25%":
resize_percentage = 25
else: # Custom
resize_percentage = custom_resize_percentage
# Calculate new dimensions based on percentage
resize_factor = resize_percentage / 100
new_width = int(source.width * resize_factor)
new_height = int(source.height * resize_factor)
# Ensure minimum size of 64 pixels
new_width = max(new_width, 64)
new_height = max(new_height, 64)
# Resize the image
source = source.resize((new_width, new_height), Image.LANCZOS)
# Calculate the overlap in pixels based on the percentage
overlap_x = int(new_width * (overlap_percentage / 100))
overlap_y = int(new_height * (overlap_percentage / 100))
# Ensure minimum overlap of 1 pixel
overlap_x = max(overlap_x, 1)
overlap_y = max(overlap_y, 1)
# Calculate margins based on alignment
if alignment == "Middle":
margin_x = (target_size[0] - new_width) // 2
margin_y = (target_size[1] - new_height) // 2
elif alignment == "Left":
margin_x = 0
margin_y = (target_size[1] - new_height) // 2
elif alignment == "Right":
margin_x = target_size[0] - new_width
margin_y = (target_size[1] - new_height) // 2
elif alignment == "Top":
margin_x = (target_size[0] - new_width) // 2
margin_y = 0
elif alignment == "Bottom":
margin_x = (target_size[0] - new_width) // 2
margin_y = target_size[1] - new_height
# Adjust margins to eliminate gaps
margin_x = max(0, min(margin_x, target_size[0] - new_width))
margin_y = max(0, min(margin_y, target_size[1] - new_height))
# Create a new background image and paste the resized source image
background = Image.new('RGB', target_size, (255, 255, 255))
background.paste(source, (margin_x, margin_y))
# Create the mask
mask = Image.new('L', target_size, 255)
mask_draw = ImageDraw.Draw(mask)
# Calculate overlap areas
white_gaps_patch = 2 # Pixels to leave unmasked at edges if overlap is disabled for that edge
left_overlap = margin_x + overlap_x if overlap_left else margin_x + white_gaps_patch
right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width - white_gaps_patch
top_overlap = margin_y + overlap_y if overlap_top else margin_y + white_gaps_patch
bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height - white_gaps_patch
# Adjust overlap boundaries based on alignment when specific overlap directions are *disabled*
# This prevents unmasking the absolute edge of the canvas in alignment modes
if alignment == "Left":
left_overlap = margin_x + overlap_x if overlap_left else margin_x # Keep edge masked if alignment is left
elif alignment == "Right":
right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width # Keep edge masked
elif alignment == "Top":
top_overlap = margin_y + overlap_y if overlap_top else margin_y # Keep edge masked
elif alignment == "Bottom":
bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height # Keep edge masked
# Ensure coordinates are within bounds
left_overlap = max(0, left_overlap)
top_overlap = max(0, top_overlap)
right_overlap = min(target_size[0], right_overlap)
bottom_overlap = min(target_size[1], bottom_overlap)
# Draw the mask (black rectangle for the area to keep)
if right_overlap > left_overlap and bottom_overlap > top_overlap:
mask_draw.rectangle([
(left_overlap, top_overlap),
(right_overlap, bottom_overlap)
], fill=0) # 0 means keep this area (not masked for inpainting)
# Invert the mask: White areas (255) will be inpainted. Black (0) is kept.
mask = Image.fromarray(255 - np.array(mask))
return background, mask
def preview_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
# Create a preview image showing the mask
preview = background.copy().convert('RGBA')
# Create a semi-transparent red overlay for the masked (inpainting) area
red_overlay = Image.new('RGBA', background.size, (255, 0, 0, 100)) # 100 alpha (~40% opacity)
# The mask is now white (255) where inpainting happens. Use this directly.
preview.paste(red_overlay, (0, 0), mask)
return preview
@spaces.GPU(duration=24)
def infer(image, width, height, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
# Ensure alignment allows expansion, default to Middle if not
source_w, source_h = background.size # Use background size after initial resize/placement
target_w, target_h = width, height
if alignment in ("Left", "Right") and source_w >= target_w:
print(f"Warning: Source width ({source_w}) >= target width ({target_w}) with {alignment} alignment. Forcing Middle alignment.")
alignment = "Middle"
# Re-prepare mask/background with corrected alignment if needed (optional, depends if prepare func uses alignment early)
# background, mask = prepare_image_and_mask(...) # If needed
if alignment in ("Top", "Bottom") and source_h >= target_h:
print(f"Warning: Source height ({source_h}) >= target height ({target_h}) with {alignment} alignment. Forcing Middle alignment.")
alignment = "Middle"
# Re-prepare mask/background with corrected alignment if needed
# background, mask = prepare_image_and_mask(...) # If needed
# Image for ControlNet input (masked original content)
# The pipeline expects the original image content in the non-masked area
cnet_image = background.copy()
# The pipeline's `image` argument is the *initial* content for the *masked* area (often noise, but here we provide the background)
# The `mask_image` tells the pipeline *where* to perform the inpainting/outpainting.
# The controlnet `image` needs the original content visible in the non-masked area.
# ControlNet Union seems to work well by just passing the background with the source image pasted.
final_prompt = f"{prompt_input} , high quality, 4k" if prompt_input else "high quality, 4k"
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = pipe.encode_prompt(final_prompt, "cuda", True)
# The pipeline call
# Note: The pipeline expects `image` (initial state for masked area) and `mask_image`
# The `control_image` is implicitly handled by the ControlNet attached to the pipeline
output_image = pipe(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
image=background, # Provide the initial canvas state
mask_image=mask, # Provide the mask (white is area to change)
control_image=cnet_image, # Pass the control image explicitly if needed by pipeline logic
num_inference_steps=num_inference_steps,
output_type="pil" # Ensure PIL output
).images[0]
# The pipeline should have already handled the compositing based on the mask
# If not, uncomment the paste operation below:
# final_image = background.copy().convert("RGBA") # Start with original background
# output_image = output_image.convert("RGBA")
# mask_rgba = mask.convert('L').point(lambda p: 255 if p > 128 else 0) # Ensure mask is binary 0/255
# final_image.paste(output_image, (0, 0), mask_rgba) # Paste generated content using the mask
# Return the single final image
return output_image
def clear_result():
"""Clears the result Image component."""
return gr.update(value=None)
# --- UI Helper Functions (Unchanged) ---
def preload_presets(target_ratio, ui_width, ui_height):
"""Updates the width and height sliders based on the selected aspect ratio."""
if target_ratio == "9:16":
changed_width = 720
changed_height = 1280
return changed_width, changed_height, gr.update() # Close accordion
elif target_ratio == "16:9":
changed_width = 1280
changed_height = 720
return changed_width, changed_height, gr.update() # Close accordion
elif target_ratio == "1:1":
changed_width = 1024
changed_height = 1024
return changed_width, changed_height, gr.update() # Close accordion
elif target_ratio == "Custom":
# Don't change sliders, just open accordion
return ui_width, ui_height, gr.update(open=True)
def select_the_right_preset(user_width, user_height):
"""Updates the radio button based on the current slider values."""
if user_width == 720 and user_height == 1280:
return "9:16"
elif user_width == 1280 and user_height == 720:
return "16:9"
elif user_width == 1024 and user_height == 1024:
return "1:1"
else:
return "Custom"
def toggle_custom_resize_slider(resize_option):
"""Shows/hides the custom resize slider."""
return gr.update(visible=(resize_option == "Custom"))
def update_history(new_image, history):
"""Updates the history gallery with the new image."""
if history is None:
history = []
# Ensure new_image is a PIL Image before adding
if isinstance(new_image, Image.Image):
history.insert(0, new_image)
return history
# --- Gradio UI Definition ---
css = """
.gradio-container {
width: 1200px !important;
margin: auto !important; /* Center the container */
}
h1 { text-align: center; }
footer { visibility: hidden; }
/* Ensure result image takes reasonable space */
#result-image img {
max-height: 768px; /* Adjust max height as needed */
object-fit: contain;
width: auto;
height: auto;
}
#history-gallery .thumbnail-item { /* Style history items */
height: 100px !important;
}
#history-gallery .gallery {
grid-template-rows: repeat(auto-fill, 100px) !important;
}
"""
title = """<h1 align="center">Diffusers Image Outpaint Lightning</h1>"""
with gr.Blocks(css=css) as demo:
with gr.Column():
gr.HTML(title)
with gr.Row():
with gr.Column(scale=1): # Left column for inputs
input_image = gr.Image(
type="pil",
label="Input Image",
height=400 # Give input image reasonable height
)
with gr.Row():
with gr.Column(scale=2):
prompt_input = gr.Textbox(label="Prompt (Optional)", placeholder="Describe the scene to expand...")
with gr.Column(scale=1):
run_button = gr.Button("Generate", variant="primary") # Make primary
with gr.Row():
target_ratio = gr.Radio(
label="Target Ratio",
choices=["9:16", "16:9", "1:1", "Custom"],
value="9:16",
scale=2
)
alignment_dropdown = gr.Dropdown(
choices=["Middle", "Left", "Right", "Top", "Bottom"],
value="Middle",
label="Align Source Image"
)
with gr.Accordion(label="Advanced settings", open=False) as settings_panel:
with gr.Row():
width_slider = gr.Slider(
label="Target Width",
minimum=512, # Lowered minimum slightly
maximum=2048, # Increased maximum slightly
step=64, # Use steps of 64 common for SD
value=720,
)
height_slider = gr.Slider(
label="Target Height",
minimum=512,
maximum=2048,
step=64,
value=1280,
)
num_inference_steps = gr.Slider(label="Steps", minimum=1, maximum=12, step=1, value=4) # TCD/Lightning allows few steps
with gr.Group():
overlap_percentage = gr.Slider(
label="Mask overlap (%)",
minimum=1,
maximum=50,
value=12, # Default overlap
step=1
)
with gr.Row():
overlap_top = gr.Checkbox(label="Top", value=True)
overlap_right = gr.Checkbox(label="Right", value=True)
overlap_bottom = gr.Checkbox(label="Bottom", value=True)
overlap_left = gr.Checkbox(label="Left", value=True)
with gr.Row():
resize_option = gr.Radio(
label="Resize input within target",
choices=["Full", "50%", "33%", "25%", "Custom"],
value="Full"
)
custom_resize_percentage = gr.Slider(
label="Custom resize (%)",
minimum=1,
maximum=100,
step=1,
value=50,
visible=False # Initially hidden
)
preview_button = gr.Button("Preview Mask & Alignment")
preview_image = gr.Image(label="Mask Preview (Red = Outpaint Area)", type="pil", interactive=False)
gr.Examples(
examples=[
["./examples/example_1.webp", "A wide landscape view of the mountains", 1280, 720, "Middle"],
["./examples/example_2.jpg", "Full body shot of the astronaut on the moon", 720, 1280, "Middle"],
["./examples/example_3.jpg", "Expanding the sky and ground around the subject", 1024, 1024, "Middle"],
["./examples/example_3.jpg", "Expanding downwards from the subject", 1024, 1024, "Top"], # Align subject Top
["./examples/example_3.jpg", "Expanding upwards from the subject", 1024, 1024, "Bottom"], # Align subject Bottom
],
inputs=[input_image, prompt_input, width_slider, height_slider, alignment_dropdown],
label="Examples (Click to load)"
)
with gr.Column(scale=1): # Right column for output
# Replace ImageSlider with gr.Image
result = gr.Image(label="Generated Image", type="pil", interactive=False, elem_id="result-image")
use_as_input_button = gr.Button("Use Result as Input Image", visible=False) # Initially hidden
history_gallery = gr.Gallery(
label="History",
columns=6,
object_fit="contain",
interactive=False,
height=110, # Fixed height for the row
elem_id="history-gallery"
)
# --- Event Handling ---
def use_output_as_input(output_image):
"""Sets the generated output as the new input image."""
# output_image is now the single final image from gr.Image
return gr.update(value=output_image)
use_as_input_button.click(
fn=use_output_as_input,
inputs=[result], # Input is the result image component
outputs=[input_image] # Output updates the input image component
)
target_ratio.change(
fn=preload_presets,
inputs=[target_ratio, width_slider, height_slider],
outputs=[width_slider, height_slider, settings_panel], # Also control accordion state
queue=False
)
# Link sliders back to the ratio selector
width_slider.change(
fn=select_the_right_preset,
inputs=[width_slider, height_slider],
outputs=[target_ratio],
queue=False
)
height_slider.change(
fn=select_the_right_preset,
inputs=[width_slider, height_slider],
outputs=[target_ratio],
queue=False
)
resize_option.change(
fn=toggle_custom_resize_slider,
inputs=[resize_option],
outputs=[custom_resize_percentage],
queue=False
)
# Consolidate common inputs for generation
gen_inputs = [
input_image, width_slider, height_slider, overlap_percentage, num_inference_steps,
resize_option, custom_resize_percentage, prompt_input, alignment_dropdown,
overlap_left, overlap_right, overlap_top, overlap_bottom
]
# Chain generation logic
run_button.click(
fn=clear_result,
inputs=None,
outputs=[result], # Clear the single image output
queue=False # Run clearing immediately
).then(
fn=infer,
inputs=gen_inputs,
outputs=[result], # Output the single image to the result component
).then(
# Update history with the single result image
fn=lambda res_img, hist: update_history(res_img, hist),
inputs=[result, history_gallery],
outputs=[history_gallery],
queue=False # Update history immediately after generation
).then(
# Show the 'Use as Input' button
fn=lambda: gr.update(visible=True),
inputs=None,
outputs=[use_as_input_button],
queue=False # Show button immediately
)
prompt_input.submit(
fn=clear_result,
inputs=None,
outputs=[result],
queue=False
).then(
fn=infer,
inputs=gen_inputs,
outputs=[result],
).then(
fn=lambda res_img, hist: update_history(res_img, hist),
inputs=[result, history_gallery],
outputs=[history_gallery],
queue=False
).then(
fn=lambda: gr.update(visible=True),
inputs=None,
outputs=[use_as_input_button],
queue=False
)
preview_button.click(
fn=preview_image_and_mask,
inputs=[input_image, width_slider, height_slider, overlap_percentage, resize_option, custom_resize_percentage, alignment_dropdown,
overlap_left, overlap_right, overlap_top, overlap_bottom],
outputs=preview_image,
queue=False # Preview should be fast
)
demo.queue(max_size=10).launch(ssr_mode=False, show_error=True) # Removed share=False for potential Hugging Face Spaces use |