Spaces:
Running
on
Zero
Running
on
Zero
File size: 20,787 Bytes
a85c4cf f5e2b63 04cce22 ce44242 11d7c13 f5e2b63 04cce22 f5e2b63 a85c4cf ce44242 04cce22 f5e2b63 04cce22 3297fb3 f5e2b63 04cce22 f5e2b63 04cce22 f5e2b63 04cce22 f5e2b63 ce44242 f5e2b63 04cce22 f5e2b63 04cce22 ce44242 04cce22 ce44242 04cce22 ce44242 04cce22 ce44242 04cce22 ce44242 04cce22 ce44242 04cce22 ce44242 04cce22 14bfced f5e2b63 04cce22 ce44242 f5e2b63 ce44242 f5e2b63 04cce22 ce44242 f5e2b63 04cce22 ce44242 04cce22 ce44242 04cce22 ce44242 11d7c13 ce44242 f5e2b63 ce44242 f5e2b63 04cce22 ce44242 04cce22 ce44242 11d7c13 f5e2b63 ce44242 04cce22 56aa407 04cce22 108256c 11d7c13 108256c ce44242 108256c ce44242 108256c ce44242 108256c ce44242 108256c ce44242 108256c ce44242 108256c ce44242 108256c ce44242 108256c ce44242 108256c ce44242 108256c ce44242 108256c ce44242 108256c ce44242 108256c ce44242 108256c ce44242 108256c ce44242 108256c ce44242 108256c ce44242 108256c ce44242 108256c ce44242 108256c ce44242 108256c ce44242 108256c ce44242 108256c ce44242 108256c ce44242 108256c e9f69e7 ce44242 e9f69e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 |
import gradio as gr
import spaces
import torch
from diffusers import AutoencoderKL, TCDScheduler
from diffusers.models.model_loading_utils import load_state_dict
# Removed: from gradio_imageslider import ImageSlider
from huggingface_hub import hf_hub_download
from controlnet_union import ControlNetModel_Union
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline
from PIL import Image, ImageDraw
import numpy as np
# --- Model Loading (unchanged) ---
config_file = hf_hub_download(
"xinsir/controlnet-union-sdxl-1.0",
filename="config_promax.json",
)
config = ControlNetModel_Union.load_config(config_file)
controlnet_model = ControlNetModel_Union.from_config(config)
model_file = hf_hub_download(
"xinsir/controlnet-union-sdxl-1.0",
filename="diffusion_pytorch_model_promax.safetensors",
)
sstate_dict = load_state_dict(model_file)
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model(
controlnet_model, sstate_dict, model_file, "xinsir/controlnet-union-sdxl-1.0"
)
model.to(device="cuda", dtype=torch.float16)
#----------------------
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
).to("cuda")
pipe = StableDiffusionXLFillPipeline.from_pretrained(
"SG161222/RealVisXL_V5.0_Lightning",
torch_dtype=torch.float16,
vae=vae,
controlnet=model,
variant="fp16",
).to("cuda")
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
# --- Helper Functions (unchanged, except infer) ---
def can_expand(source_width, source_height, target_width, target_height, alignment):
"""Checks if the image can be expanded based on the alignment."""
if alignment in ("Left", "Right") and source_width >= target_width:
return False
if alignment in ("Top", "Bottom") and source_height >= target_height:
return False
return True
def prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
target_size = (width, height)
# Calculate the scaling factor to fit the image within the target size
scale_factor = min(target_size[0] / image.width, target_size[1] / image.height)
new_width = int(image.width * scale_factor)
new_height = int(image.height * scale_factor)
# Resize the source image to fit within target size
source = image.resize((new_width, new_height), Image.LANCZOS)
# Apply resize option using percentages
if resize_option == "Full":
resize_percentage = 100
elif resize_option == "50%":
resize_percentage = 50
elif resize_option == "33%":
resize_percentage = 33
elif resize_option == "25%":
resize_percentage = 25
else: # Custom
resize_percentage = custom_resize_percentage
# Calculate new dimensions based on percentage
resize_factor = resize_percentage / 100
new_width = int(source.width * resize_factor)
new_height = int(source.height * resize_factor)
# Ensure minimum size of 64 pixels
new_width = max(new_width, 64)
new_height = max(new_height, 64)
# Resize the image
source = source.resize((new_width, new_height), Image.LANCZOS)
# Calculate the overlap in pixels based on the percentage
overlap_x = int(new_width * (overlap_percentage / 100))
overlap_y = int(new_height * (overlap_percentage / 100))
# Ensure minimum overlap of 1 pixel
overlap_x = max(overlap_x, 1)
overlap_y = max(overlap_y, 1)
# Calculate margins based on alignment
if alignment == "Middle":
margin_x = (target_size[0] - new_width) // 2
margin_y = (target_size[1] - new_height) // 2
elif alignment == "Left":
margin_x = 0
margin_y = (target_size[1] - new_height) // 2
elif alignment == "Right":
margin_x = target_size[0] - new_width
margin_y = (target_size[1] - new_height) // 2
elif alignment == "Top":
margin_x = (target_size[0] - new_width) // 2
margin_y = 0
elif alignment == "Bottom":
margin_x = (target_size[0] - new_width) // 2
margin_y = target_size[1] - new_height
# Adjust margins to eliminate gaps
margin_x = max(0, min(margin_x, target_size[0] - new_width))
margin_y = max(0, min(margin_y, target_size[1] - new_height))
# Create a new background image and paste the resized source image
background = Image.new('RGB', target_size, (255, 255, 255))
background.paste(source, (margin_x, margin_y))
# Create the mask
mask = Image.new('L', target_size, 255)
mask_draw = ImageDraw.Draw(mask)
# Calculate overlap areas
white_gaps_patch = 2
left_overlap = margin_x + overlap_x if overlap_left else margin_x + white_gaps_patch
right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width - white_gaps_patch
top_overlap = margin_y + overlap_y if overlap_top else margin_y + white_gaps_patch
bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height - white_gaps_patch
if alignment == "Left":
left_overlap = margin_x + overlap_x if overlap_left else margin_x
elif alignment == "Right":
right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width
elif alignment == "Top":
top_overlap = margin_y + overlap_y if overlap_top else margin_y
elif alignment == "Bottom":
bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height
# Draw the mask
mask_draw.rectangle([
(left_overlap, top_overlap),
(right_overlap, bottom_overlap)
], fill=0)
return background, mask
def preview_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
# Create a preview image showing the mask
preview = background.copy().convert('RGBA')
# Create a semi-transparent red overlay
red_overlay = Image.new('RGBA', background.size, (255, 0, 0, 64)) # Reduced alpha to 64 (25% opacity)
# Convert black pixels in the mask to semi-transparent red
red_mask = Image.new('RGBA', background.size, (0, 0, 0, 0))
red_mask.paste(red_overlay, (0, 0), mask)
# Overlay the red mask on the background
preview = Image.alpha_composite(preview, red_mask)
return preview
@spaces.GPU(duration=24)
def infer(image, width, height, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
if not can_expand(background.width, background.height, width, height, alignment):
alignment = "Middle" # Default to middle if expansion not possible with current alignment
cnet_image = background.copy()
# Prepare the controlnet input image (original image with blacked-out mask area)
# Note: The pipeline expects the original image content where the mask is 0 (black)
# and the area to be filled where the mask is 255 (white).
# However, the current pipeline_fill_sd_xl seems to use the mask differently internally.
# Let's prepare the input image as per the original logic, which pastes black over the masked area.
black_fill = Image.new('RGB', cnet_image.size, (0, 0, 0))
# Invert the mask: white (255) becomes the area to keep, black (0) the area to fill
inverted_mask = Image.eval(mask, lambda x: 255 - x)
cnet_image.paste(black_fill, (0, 0), inverted_mask) # Paste black where the inverted mask is white (original mask was 0)
final_prompt = f"{prompt_input} , high quality, 4k"
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = pipe.encode_prompt(final_prompt, "cuda", True)
# Generate the image content for the masked area
# The pipeline yields the generated content for the masked area
# We only need the final result from the generator
generated_content = None
for res in pipe(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
image=cnet_image, # Pass the image with blacked-out area
mask_image=mask, # Pass the mask (white = area to fill)
num_inference_steps=num_inference_steps
):
generated_content = res # Keep updating until the last step
# The pipeline directly returns the final composite image in recent versions
# If it returns only the filled part, we need to composite it
# Let's assume the pipeline returns the final composited image based on its name "FillPipeline"
final_image = generated_content
# --- OLD compositing logic (keep commented in case pipeline behavior differs) ---
# # Convert generated content to RGBA to handle potential transparency
# generated_content = generated_content.convert("RGBA")
# # Create the final composite image by pasting the generated content onto the background
# final_image = background.copy().convert("RGBA")
# # Paste the generated content using the original mask (white area = where to paste)
# final_image.paste(generated_content, (0, 0), mask)
# final_image = final_image.convert("RGB") # Convert back to RGB if needed
# Yield only the final composited image
yield final_image
def clear_result():
"""Clears the result Image."""
return gr.update(value=None)
def preload_presets(target_ratio, ui_width, ui_height):
"""Updates the width and height sliders based on the selected aspect ratio."""
if target_ratio == "9:16":
changed_width = 720
changed_height = 1280
return changed_width, changed_height, gr.update()
elif target_ratio == "16:9":
changed_width = 1280
changed_height = 720
return changed_width, changed_height, gr.update()
elif target_ratio == "1:1":
changed_width = 1024
changed_height = 1024
return changed_width, changed_height, gr.update()
elif target_ratio == "Custom":
# When switching to custom, keep current slider values but open the accordion
return ui_width, ui_height, gr.update(open=True)
def select_the_right_preset(user_width, user_height):
if user_width == 720 and user_height == 1280:
return "9:16"
elif user_width == 1280 and user_height == 720:
return "16:9"
elif user_width == 1024 and user_height == 1024:
return "1:1"
else:
return "Custom"
def toggle_custom_resize_slider(resize_option):
return gr.update(visible=(resize_option == "Custom"))
def update_history(new_image, history):
"""Updates the history gallery with the new image."""
if history is None:
history = []
# Ensure new_image is a PIL Image before inserting
if isinstance(new_image, Image.Image):
history.insert(0, new_image)
# Handle cases where the input might be None or not an image (e.g., during clearing)
elif new_image is not None:
print(f"Warning: Attempted to add non-image type to history: {type(new_image)}")
return history
# --- Gradio UI ---
css = """
.gradio-container {
width: 1200px !important;
}
h1 { text-align: center; }
footer { visibility: hidden; }
"""
title = """<h1 align="center">Diffusers Image Outpaint Lightning</h1>
"""
with gr.Blocks(css=css) as demo:
with gr.Column():
gr.HTML(title)
with gr.Row():
with gr.Column():
input_image = gr.Image(
type="pil",
label="Input Image"
)
with gr.Row():
with gr.Column(scale=2):
prompt_input = gr.Textbox(label="Prompt (Optional)")
with gr.Column(scale=1):
run_button = gr.Button("Generate")
with gr.Row():
target_ratio = gr.Radio(
label="Expected Ratio",
choices=["9:16", "16:9", "1:1", "Custom"],
value="9:16",
scale=2
)
alignment_dropdown = gr.Dropdown(
choices=["Middle", "Left", "Right", "Top", "Bottom"],
value="Middle",
label="Alignment"
)
with gr.Accordion(label="Advanced settings", open=False) as settings_panel:
with gr.Column():
with gr.Row():
width_slider = gr.Slider(
label="Target Width",
minimum=720,
maximum=1536,
step=8,
value=720, # Default for 9:16
)
height_slider = gr.Slider(
label="Target Height",
minimum=720,
maximum=1536,
step=8,
value=1280, # Default for 9:16
)
num_inference_steps = gr.Slider(label="Steps", minimum=4, maximum=12, step=1, value=8)
with gr.Group():
overlap_percentage = gr.Slider(
label="Mask overlap (%)",
minimum=1,
maximum=50,
value=10,
step=1
)
with gr.Row():
overlap_top = gr.Checkbox(label="Overlap Top", value=True)
overlap_right = gr.Checkbox(label="Overlap Right", value=True)
with gr.Row(): # Changed nesting for better layout
overlap_left = gr.Checkbox(label="Overlap Left", value=True)
overlap_bottom = gr.Checkbox(label="Overlap Bottom", value=True)
with gr.Row():
resize_option = gr.Radio(
label="Resize input image",
choices=["Full", "50%", "33%", "25%", "Custom"],
value="Full"
)
custom_resize_percentage = gr.Slider(
label="Custom resize (%)",
minimum=1,
maximum=100,
step=1,
value=50,
visible=False
)
with gr.Column(): # Keep preview button separate
preview_button = gr.Button("Preview alignment and mask")
gr.Examples(
examples=[
["./examples/example_1.webp", 1280, 720, "Middle"],
["./examples/example_2.jpg", 1440, 810, "Left"],
["./examples/example_3.jpg", 1024, 1024, "Top"],
["./examples/example_3.jpg", 1024, 1024, "Bottom"],
],
inputs=[input_image, width_slider, height_slider, alignment_dropdown],
# Ensure examples don't try to set output components directly
# outputs=[result], # Remove output mapping from examples
# fn=infer, # Don't run infer on example click, just load inputs
)
with gr.Column():
# *** MODIFICATION: Changed ImageSlider to Image ***
result = gr.Image(label="Generated Image", interactive=False, type="pil")
use_as_input_button = gr.Button("Use as Input Image", visible=False)
history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", interactive=False, type="pil")
preview_image = gr.Image(label="Preview", type="pil") # Ensure preview is also PIL
# --- Event Handlers ---
def use_output_as_input(output_image):
"""Sets the generated output as the new input image."""
# *** MODIFICATION: Access the image directly, not output_image[1] ***
return gr.update(value=output_image)
use_as_input_button.click(
fn=use_output_as_input,
inputs=[result], # Input is the single result image
outputs=[input_image]
)
target_ratio.change(
fn=preload_presets,
inputs=[target_ratio, width_slider, height_slider],
outputs=[width_slider, height_slider, settings_panel],
queue=False
)
# Link sliders change to update the ratio selection to "Custom"
width_slider.change(
fn=select_the_right_preset,
inputs=[width_slider, height_slider],
outputs=[target_ratio],
queue=False
).then(
fn=lambda: gr.update(open=True), # Also open accordion on slider change
inputs=None,
outputs=settings_panel,
queue=False
)
height_slider.change(
fn=select_the_right_preset,
inputs=[width_slider, height_slider],
outputs=[target_ratio],
queue=False
).then(
fn=lambda: gr.update(open=True), # Also open accordion on slider change
inputs=None,
outputs=settings_panel,
queue=False
)
resize_option.change(
fn=toggle_custom_resize_slider,
inputs=[resize_option],
outputs=[custom_resize_percentage],
queue=False
)
# Combine run logic for Button and Textbox submission
run_inputs = [
input_image, width_slider, height_slider, overlap_percentage, num_inference_steps,
resize_option, custom_resize_percentage, prompt_input, alignment_dropdown,
overlap_left, overlap_right, overlap_top, overlap_bottom
]
def run_generation(img, w, h, ov_perc, steps, res_opt, cust_res_perc, prompt, align, ov_l, ov_r, ov_t, ov_b, history):
# The infer function is a generator, we need to iterate to get the final value
final_image = None
for res_img in infer(img, w, h, ov_perc, steps, res_opt, cust_res_perc, prompt, align, ov_l, ov_r, ov_t, ov_b):
final_image = res_img
# Update history with the final image
updated_history = update_history(final_image, history)
# Return the final image for the result component and the updated history
return final_image, updated_history, gr.update(visible=True) # Also make button visible
run_button.click(
fn=clear_result, # First clear the previous result
inputs=None,
outputs=result,
queue=False # Clearing should be fast
).then(
fn=run_generation, # Then run the generation and history update
inputs=run_inputs + [history_gallery], # Pass current history
outputs=[result, history_gallery, use_as_input_button], # Update result, history, and button visibility
)
prompt_input.submit(
fn=clear_result, # First clear the previous result
inputs=None,
outputs=result,
queue=False # Clearing should be fast
).then(
fn=run_generation, # Then run the generation and history update
inputs=run_inputs + [history_gallery], # Pass current history
outputs=[result, history_gallery, use_as_input_button], # Update result, history, and button visibility
)
preview_button.click(
fn=preview_image_and_mask,
inputs=[input_image, width_slider, height_slider, overlap_percentage, resize_option, custom_resize_percentage, alignment_dropdown,
overlap_left, overlap_right, overlap_top, overlap_bottom],
outputs=preview_image,
queue=False # Preview should be fast
)
# Launch the demo
demo.queue(max_size=20).launch(share=False, ssr_mode=False, show_error=True) |