File size: 20,787 Bytes
a85c4cf
 
 
f5e2b63
04cce22
ce44242
11d7c13
f5e2b63
04cce22
 
 
f5e2b63
a85c4cf
 
ce44242
04cce22
f5e2b63
04cce22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3297fb3
f5e2b63
04cce22
f5e2b63
 
 
 
 
 
04cce22
f5e2b63
 
04cce22
f5e2b63
 
ce44242
 
f5e2b63
04cce22
f5e2b63
 
 
 
 
 
04cce22
 
 
 
 
 
 
ce44242
04cce22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce44242
04cce22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce44242
04cce22
 
ce44242
04cce22
 
ce44242
04cce22
 
 
ce44242
04cce22
 
ce44242
04cce22
14bfced
f5e2b63
04cce22
 
ce44242
f5e2b63
ce44242
f5e2b63
04cce22
ce44242
 
 
 
 
 
 
 
 
 
f5e2b63
 
 
04cce22
 
 
 
 
 
 
ce44242
 
 
 
 
04cce22
 
 
 
ce44242
 
04cce22
 
ce44242
11d7c13
ce44242
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5e2b63
 
 
ce44242
f5e2b63
 
04cce22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce44242
04cce22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce44242
 
 
 
 
 
11d7c13
f5e2b63
ce44242
 
04cce22
 
 
 
 
 
 
56aa407
04cce22
 
108256c
11d7c13
108256c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce44242
108256c
 
 
 
 
 
 
 
 
 
 
 
 
 
ce44242
108256c
 
 
 
 
 
ce44242
108256c
ce44242
108256c
 
 
 
 
 
 
 
 
 
 
 
ce44242
108256c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce44242
 
108256c
ce44242
 
108256c
 
 
 
 
 
 
 
ce44242
 
 
108256c
 
 
 
ce44242
 
108256c
 
ce44242
 
108256c
ce44242
108256c
 
 
ce44242
 
108256c
 
 
ce44242
108256c
 
ce44242
108256c
 
 
 
 
 
 
ce44242
108256c
 
 
 
 
ce44242
 
 
 
 
108256c
 
ce44242
108256c
 
 
 
 
ce44242
 
 
 
 
108256c
 
ce44242
108256c
 
 
 
 
 
ce44242
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
108256c
 
ce44242
 
 
 
 
108256c
 
ce44242
 
108256c
 
ce44242
 
 
 
 
108256c
 
ce44242
108256c
 
 
 
 
ce44242
108256c
e9f69e7
ce44242
e9f69e7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
import gradio as gr
import spaces
import torch
from diffusers import AutoencoderKL, TCDScheduler
from diffusers.models.model_loading_utils import load_state_dict
# Removed: from gradio_imageslider import ImageSlider
from huggingface_hub import hf_hub_download

from controlnet_union import ControlNetModel_Union
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline

from PIL import Image, ImageDraw
import numpy as np

# --- Model Loading (unchanged) ---
config_file = hf_hub_download(
    "xinsir/controlnet-union-sdxl-1.0",
    filename="config_promax.json",
)

config = ControlNetModel_Union.load_config(config_file)
controlnet_model = ControlNetModel_Union.from_config(config)
model_file = hf_hub_download(
    "xinsir/controlnet-union-sdxl-1.0",
    filename="diffusion_pytorch_model_promax.safetensors",
)

sstate_dict = load_state_dict(model_file)
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model(
    controlnet_model, sstate_dict, model_file, "xinsir/controlnet-union-sdxl-1.0"
)
model.to(device="cuda", dtype=torch.float16)
#----------------------

vae = AutoencoderKL.from_pretrained(
    "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
).to("cuda")

pipe = StableDiffusionXLFillPipeline.from_pretrained(
    "SG161222/RealVisXL_V5.0_Lightning",
    torch_dtype=torch.float16,
    vae=vae,
    controlnet=model,
    variant="fp16",
).to("cuda")

pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)

# --- Helper Functions (unchanged, except infer) ---

def can_expand(source_width, source_height, target_width, target_height, alignment):
    """Checks if the image can be expanded based on the alignment."""
    if alignment in ("Left", "Right") and source_width >= target_width:
        return False
    if alignment in ("Top", "Bottom") and source_height >= target_height:
        return False
    return True

def prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
    target_size = (width, height)

    # Calculate the scaling factor to fit the image within the target size
    scale_factor = min(target_size[0] / image.width, target_size[1] / image.height)
    new_width = int(image.width * scale_factor)
    new_height = int(image.height * scale_factor)

    # Resize the source image to fit within target size
    source = image.resize((new_width, new_height), Image.LANCZOS)

    # Apply resize option using percentages
    if resize_option == "Full":
        resize_percentage = 100
    elif resize_option == "50%":
        resize_percentage = 50
    elif resize_option == "33%":
        resize_percentage = 33
    elif resize_option == "25%":
        resize_percentage = 25
    else:  # Custom
        resize_percentage = custom_resize_percentage

    # Calculate new dimensions based on percentage
    resize_factor = resize_percentage / 100
    new_width = int(source.width * resize_factor)
    new_height = int(source.height * resize_factor)

    # Ensure minimum size of 64 pixels
    new_width = max(new_width, 64)
    new_height = max(new_height, 64)

    # Resize the image
    source = source.resize((new_width, new_height), Image.LANCZOS)

    # Calculate the overlap in pixels based on the percentage
    overlap_x = int(new_width * (overlap_percentage / 100))
    overlap_y = int(new_height * (overlap_percentage / 100))

    # Ensure minimum overlap of 1 pixel
    overlap_x = max(overlap_x, 1)
    overlap_y = max(overlap_y, 1)

    # Calculate margins based on alignment
    if alignment == "Middle":
        margin_x = (target_size[0] - new_width) // 2
        margin_y = (target_size[1] - new_height) // 2
    elif alignment == "Left":
        margin_x = 0
        margin_y = (target_size[1] - new_height) // 2
    elif alignment == "Right":
        margin_x = target_size[0] - new_width
        margin_y = (target_size[1] - new_height) // 2
    elif alignment == "Top":
        margin_x = (target_size[0] - new_width) // 2
        margin_y = 0
    elif alignment == "Bottom":
        margin_x = (target_size[0] - new_width) // 2
        margin_y = target_size[1] - new_height

    # Adjust margins to eliminate gaps
    margin_x = max(0, min(margin_x, target_size[0] - new_width))
    margin_y = max(0, min(margin_y, target_size[1] - new_height))

    # Create a new background image and paste the resized source image
    background = Image.new('RGB', target_size, (255, 255, 255))
    background.paste(source, (margin_x, margin_y))

    # Create the mask
    mask = Image.new('L', target_size, 255)
    mask_draw = ImageDraw.Draw(mask)

    # Calculate overlap areas
    white_gaps_patch = 2

    left_overlap = margin_x + overlap_x if overlap_left else margin_x + white_gaps_patch
    right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width - white_gaps_patch
    top_overlap = margin_y + overlap_y if overlap_top else margin_y + white_gaps_patch
    bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height - white_gaps_patch

    if alignment == "Left":
        left_overlap = margin_x + overlap_x if overlap_left else margin_x
    elif alignment == "Right":
        right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width
    elif alignment == "Top":
        top_overlap = margin_y + overlap_y if overlap_top else margin_y
    elif alignment == "Bottom":
        bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height


    # Draw the mask
    mask_draw.rectangle([
        (left_overlap, top_overlap),
        (right_overlap, bottom_overlap)
    ], fill=0)

    return background, mask

def preview_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
    background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)

    # Create a preview image showing the mask
    preview = background.copy().convert('RGBA')

    # Create a semi-transparent red overlay
    red_overlay = Image.new('RGBA', background.size, (255, 0, 0, 64))  # Reduced alpha to 64 (25% opacity)

    # Convert black pixels in the mask to semi-transparent red
    red_mask = Image.new('RGBA', background.size, (0, 0, 0, 0))
    red_mask.paste(red_overlay, (0, 0), mask)

    # Overlay the red mask on the background
    preview = Image.alpha_composite(preview, red_mask)

    return preview

@spaces.GPU(duration=24)
def infer(image, width, height, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
    background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)

    if not can_expand(background.width, background.height, width, height, alignment):
        alignment = "Middle" # Default to middle if expansion not possible with current alignment

    cnet_image = background.copy()
    # Prepare the controlnet input image (original image with blacked-out mask area)
    # Note: The pipeline expects the original image content where the mask is 0 (black)
    # and the area to be filled where the mask is 255 (white).
    # However, the current pipeline_fill_sd_xl seems to use the mask differently internally.
    # Let's prepare the input image as per the original logic, which pastes black over the masked area.
    black_fill = Image.new('RGB', cnet_image.size, (0, 0, 0))
    # Invert the mask: white (255) becomes the area to keep, black (0) the area to fill
    inverted_mask = Image.eval(mask, lambda x: 255 - x)
    cnet_image.paste(black_fill, (0, 0), inverted_mask) # Paste black where the inverted mask is white (original mask was 0)


    final_prompt = f"{prompt_input} , high quality, 4k"

    (
        prompt_embeds,
        negative_prompt_embeds,
        pooled_prompt_embeds,
        negative_pooled_prompt_embeds,
    ) = pipe.encode_prompt(final_prompt, "cuda", True)

    # Generate the image content for the masked area
    # The pipeline yields the generated content for the masked area
    # We only need the final result from the generator
    generated_content = None
    for res in pipe(
        prompt_embeds=prompt_embeds,
        negative_prompt_embeds=negative_prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds,
        negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
        image=cnet_image, # Pass the image with blacked-out area
        mask_image=mask, # Pass the mask (white = area to fill)
        num_inference_steps=num_inference_steps
    ):
        generated_content = res # Keep updating until the last step

    # The pipeline directly returns the final composite image in recent versions
    # If it returns only the filled part, we need to composite it
    # Let's assume the pipeline returns the final composited image based on its name "FillPipeline"
    final_image = generated_content

    # --- OLD compositing logic (keep commented in case pipeline behavior differs) ---
    # # Convert generated content to RGBA to handle potential transparency
    # generated_content = generated_content.convert("RGBA")
    # # Create the final composite image by pasting the generated content onto the background
    # final_image = background.copy().convert("RGBA")
    # # Paste the generated content using the original mask (white area = where to paste)
    # final_image.paste(generated_content, (0, 0), mask)
    # final_image = final_image.convert("RGB") # Convert back to RGB if needed

    # Yield only the final composited image
    yield final_image


def clear_result():
    """Clears the result Image."""
    return gr.update(value=None)

def preload_presets(target_ratio, ui_width, ui_height):
    """Updates the width and height sliders based on the selected aspect ratio."""
    if target_ratio == "9:16":
        changed_width = 720
        changed_height = 1280
        return changed_width, changed_height, gr.update()
    elif target_ratio == "16:9":
        changed_width = 1280
        changed_height = 720
        return changed_width, changed_height, gr.update()
    elif target_ratio == "1:1":
        changed_width = 1024
        changed_height = 1024
        return changed_width, changed_height, gr.update()
    elif target_ratio == "Custom":
        # When switching to custom, keep current slider values but open the accordion
        return ui_width, ui_height, gr.update(open=True)

def select_the_right_preset(user_width, user_height):
    if user_width == 720 and user_height == 1280:
        return "9:16"
    elif user_width == 1280 and user_height == 720:
        return "16:9"
    elif user_width == 1024 and user_height == 1024:
        return "1:1"
    else:
        return "Custom"

def toggle_custom_resize_slider(resize_option):
    return gr.update(visible=(resize_option == "Custom"))

def update_history(new_image, history):
    """Updates the history gallery with the new image."""
    if history is None:
        history = []
    # Ensure new_image is a PIL Image before inserting
    if isinstance(new_image, Image.Image):
        history.insert(0, new_image)
    # Handle cases where the input might be None or not an image (e.g., during clearing)
    elif new_image is not None:
        print(f"Warning: Attempted to add non-image type to history: {type(new_image)}")
    return history


# --- Gradio UI ---
css = """
.gradio-container {
    width: 1200px !important;
}
h1 { text-align: center; }
footer { visibility: hidden; }
"""

title = """<h1 align="center">Diffusers Image Outpaint Lightning</h1>
"""

with gr.Blocks(css=css) as demo:
    with gr.Column():
        gr.HTML(title)

        with gr.Row():
            with gr.Column():
                input_image = gr.Image(
                    type="pil",
                    label="Input Image"
                )

                with gr.Row():
                    with gr.Column(scale=2):
                        prompt_input = gr.Textbox(label="Prompt (Optional)")
                    with gr.Column(scale=1):
                        run_button = gr.Button("Generate")

                with gr.Row():
                    target_ratio = gr.Radio(
                        label="Expected Ratio",
                        choices=["9:16", "16:9", "1:1", "Custom"],
                        value="9:16",
                        scale=2
                    )

                    alignment_dropdown = gr.Dropdown(
                        choices=["Middle", "Left", "Right", "Top", "Bottom"],
                        value="Middle",
                        label="Alignment"
                    )

                with gr.Accordion(label="Advanced settings", open=False) as settings_panel:
                    with gr.Column():
                        with gr.Row():
                            width_slider = gr.Slider(
                                label="Target Width",
                                minimum=720,
                                maximum=1536,
                                step=8,
                                value=720,  # Default for 9:16
                            )
                            height_slider = gr.Slider(
                                label="Target Height",
                                minimum=720,
                                maximum=1536,
                                step=8,
                                value=1280, # Default for 9:16
                            )

                        num_inference_steps = gr.Slider(label="Steps", minimum=4, maximum=12, step=1, value=8)
                        with gr.Group():
                            overlap_percentage = gr.Slider(
                                label="Mask overlap (%)",
                                minimum=1,
                                maximum=50,
                                value=10,
                                step=1
                            )
                            with gr.Row():
                                overlap_top = gr.Checkbox(label="Overlap Top", value=True)
                                overlap_right = gr.Checkbox(label="Overlap Right", value=True)
                            with gr.Row(): # Changed nesting for better layout
                                overlap_left = gr.Checkbox(label="Overlap Left", value=True)
                                overlap_bottom = gr.Checkbox(label="Overlap Bottom", value=True)
                        with gr.Row():
                            resize_option = gr.Radio(
                                label="Resize input image",
                                choices=["Full", "50%", "33%", "25%", "Custom"],
                                value="Full"
                            )
                            custom_resize_percentage = gr.Slider(
                                label="Custom resize (%)",
                                minimum=1,
                                maximum=100,
                                step=1,
                                value=50,
                                visible=False
                            )

                        with gr.Column(): # Keep preview button separate
                            preview_button = gr.Button("Preview alignment and mask")


                gr.Examples(
                    examples=[
                        ["./examples/example_1.webp", 1280, 720, "Middle"],
                        ["./examples/example_2.jpg", 1440, 810, "Left"],
                        ["./examples/example_3.jpg", 1024, 1024, "Top"],
                        ["./examples/example_3.jpg", 1024, 1024, "Bottom"],
                    ],
                    inputs=[input_image, width_slider, height_slider, alignment_dropdown],
                     # Ensure examples don't try to set output components directly
                     # outputs=[result], # Remove output mapping from examples
                     # fn=infer, # Don't run infer on example click, just load inputs
                )


            with gr.Column():
                # *** MODIFICATION: Changed ImageSlider to Image ***
                result = gr.Image(label="Generated Image", interactive=False, type="pil")
                use_as_input_button = gr.Button("Use as Input Image", visible=False)

                history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", interactive=False, type="pil")
                preview_image = gr.Image(label="Preview", type="pil") # Ensure preview is also PIL

    # --- Event Handlers ---

    def use_output_as_input(output_image):
        """Sets the generated output as the new input image."""
        # *** MODIFICATION: Access the image directly, not output_image[1] ***
        return gr.update(value=output_image)

    use_as_input_button.click(
        fn=use_output_as_input,
        inputs=[result], # Input is the single result image
        outputs=[input_image]
    )

    target_ratio.change(
        fn=preload_presets,
        inputs=[target_ratio, width_slider, height_slider],
        outputs=[width_slider, height_slider, settings_panel],
        queue=False
    )

    # Link sliders change to update the ratio selection to "Custom"
    width_slider.change(
        fn=select_the_right_preset,
        inputs=[width_slider, height_slider],
        outputs=[target_ratio],
        queue=False
    ).then(
        fn=lambda: gr.update(open=True), # Also open accordion on slider change
        inputs=None,
        outputs=settings_panel,
        queue=False
    )


    height_slider.change(
        fn=select_the_right_preset,
        inputs=[width_slider, height_slider],
        outputs=[target_ratio],
        queue=False
    ).then(
        fn=lambda: gr.update(open=True), # Also open accordion on slider change
        inputs=None,
        outputs=settings_panel,
        queue=False
    )


    resize_option.change(
        fn=toggle_custom_resize_slider,
        inputs=[resize_option],
        outputs=[custom_resize_percentage],
        queue=False
    )

    # Combine run logic for Button and Textbox submission
    run_inputs = [
        input_image, width_slider, height_slider, overlap_percentage, num_inference_steps,
        resize_option, custom_resize_percentage, prompt_input, alignment_dropdown,
        overlap_left, overlap_right, overlap_top, overlap_bottom
    ]

    def run_generation(img, w, h, ov_perc, steps, res_opt, cust_res_perc, prompt, align, ov_l, ov_r, ov_t, ov_b, history):
        # The infer function is a generator, we need to iterate to get the final value
        final_image = None
        for res_img in infer(img, w, h, ov_perc, steps, res_opt, cust_res_perc, prompt, align, ov_l, ov_r, ov_t, ov_b):
            final_image = res_img
        
        # Update history with the final image
        updated_history = update_history(final_image, history)
        
        # Return the final image for the result component and the updated history
        return final_image, updated_history, gr.update(visible=True) # Also make button visible


    run_button.click(
        fn=clear_result, # First clear the previous result
        inputs=None,
        outputs=result,
        queue=False # Clearing should be fast
    ).then(
        fn=run_generation, # Then run the generation and history update
        inputs=run_inputs + [history_gallery], # Pass current history
        outputs=[result, history_gallery, use_as_input_button], # Update result, history, and button visibility
    )

    prompt_input.submit(
        fn=clear_result, # First clear the previous result
        inputs=None,
        outputs=result,
        queue=False # Clearing should be fast
    ).then(
        fn=run_generation, # Then run the generation and history update
        inputs=run_inputs + [history_gallery], # Pass current history
        outputs=[result, history_gallery, use_as_input_button], # Update result, history, and button visibility
    )


    preview_button.click(
        fn=preview_image_and_mask,
        inputs=[input_image, width_slider, height_slider, overlap_percentage, resize_option, custom_resize_percentage, alignment_dropdown,
                overlap_left, overlap_right, overlap_top, overlap_bottom],
        outputs=preview_image,
        queue=False # Preview should be fast
    )

# Launch the demo
demo.queue(max_size=20).launch(share=False, ssr_mode=False, show_error=True)