pritamdeka commited on
Commit
e027695
Β·
1 Parent(s): 9827cda

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -16
app.py CHANGED
@@ -317,37 +317,38 @@ igen_pubmed = gr.Interface(keyphrase_generator,
317
  theme="dark-peach",
318
  title="PubMed Abstract Retriever", description="Retrieves relevant PubMed abstracts for an online article which can be used as further references. Please note that it may take sometime for the models to load. Examples are provided below for demo purposes. Choose any one example to see the results. The models can be changed to see different results. ",
319
  examples=[
320
- ["https://www.medicalnewstoday.com/articles/alzheimers-addressing-sleep-disturbance-may-alleviate-symptoms",
321
- 'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb',
322
  'sentence-transformers/all-mpnet-base-v1',
 
323
  10,
324
  'cambridgeltl/SapBERT-from-PubMedBERT-fulltext',
325
- 10,
326
- 'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb'],
327
-
328
- ["https://www.medicalnewstoday.com/articles/omicron-what-do-we-know-about-the-stealth-variant",
329
- 'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb',
330
- 'sentence-transformers/all-mpnet-base-v1',
331
  15,
332
- 'cambridgeltl/SapBERT-from-PubMedBERT-fulltext',
333
- 10,
334
  'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb'],
335
-
336
- ["https://www.cancer.news/2022-02-04-doctors-testifying-covid-vaccines-causing-cancer-aids.html#",
337
  'sentence-transformers/all-mpnet-base-v1',
338
  'sentence-transformers/all-mpnet-base-v1',
339
  12,
340
  'cambridgeltl/SapBERT-from-PubMedBERT-fulltext',
341
  11,
342
  'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb'],
343
-
344
- ["https://www.cancer.news/2021-12-22-mrna-vaccines-weaken-immune-system-cause-cancer.html",
 
345
  'sentence-transformers/all-mpnet-base-v1',
346
- 'sentence-transformers/paraphrase-MiniLM-L12-v2',
347
  10,
348
  'cambridgeltl/SapBERT-from-PubMedBERT-fulltext',
 
 
 
 
 
 
349
  15,
350
- 'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb']],
 
 
 
351
  article= "This work is based on the paper <a href=https://dl.acm.org/doi/10.1145/3487664.3487701>provided here</a>."
352
  "\t It uses the TextRank algorithm with SBERT to first find the top sentences and then extracts the keyphrases from those sentences using scispaCy and SBERT."
353
  "\t The application then uses a UMLS based BERT model, <a href=https://arxiv.org/abs/2010.11784>SapBERT</a> to cluster the keyphrases using K-means clustering method and finally create a boolean query. After that the top 10 titles and abstracts are retrieved from PubMed database and displayed according to relevancy. The SapBERT models can be changed as per the list provided. "
 
317
  theme="dark-peach",
318
  title="PubMed Abstract Retriever", description="Retrieves relevant PubMed abstracts for an online article which can be used as further references. Please note that it may take sometime for the models to load. Examples are provided below for demo purposes. Choose any one example to see the results. The models can be changed to see different results. ",
319
  examples=[
320
+ ["https://www.cancer.news/2021-12-22-mrna-vaccines-weaken-immune-system-cause-cancer.html",
 
321
  'sentence-transformers/all-mpnet-base-v1',
322
+ 'sentence-transformers/paraphrase-MiniLM-L12-v2',
323
  10,
324
  'cambridgeltl/SapBERT-from-PubMedBERT-fulltext',
 
 
 
 
 
 
325
  15,
 
 
326
  'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb'],
327
+
328
+ ["https://www.cancer.news/2022-02-04-doctors-testifying-covid-vaccines-causing-cancer-aids.html#",
329
  'sentence-transformers/all-mpnet-base-v1',
330
  'sentence-transformers/all-mpnet-base-v1',
331
  12,
332
  'cambridgeltl/SapBERT-from-PubMedBERT-fulltext',
333
  11,
334
  'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb'],
335
+
336
+ ["https://www.medicalnewstoday.com/articles/alzheimers-addressing-sleep-disturbance-may-alleviate-symptoms",
337
+ 'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb',
338
  'sentence-transformers/all-mpnet-base-v1',
 
339
  10,
340
  'cambridgeltl/SapBERT-from-PubMedBERT-fulltext',
341
+ 10,
342
+ 'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb'],
343
+
344
+ ["https://www.medicalnewstoday.com/articles/omicron-what-do-we-know-about-the-stealth-variant",
345
+ 'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb',
346
+ 'sentence-transformers/all-mpnet-base-v1',
347
  15,
348
+ 'cambridgeltl/SapBERT-from-PubMedBERT-fulltext',
349
+ 10,
350
+ 'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb']
351
+ ],
352
  article= "This work is based on the paper <a href=https://dl.acm.org/doi/10.1145/3487664.3487701>provided here</a>."
353
  "\t It uses the TextRank algorithm with SBERT to first find the top sentences and then extracts the keyphrases from those sentences using scispaCy and SBERT."
354
  "\t The application then uses a UMLS based BERT model, <a href=https://arxiv.org/abs/2010.11784>SapBERT</a> to cluster the keyphrases using K-means clustering method and finally create a boolean query. After that the top 10 titles and abstracts are retrieved from PubMed database and displayed according to relevancy. The SapBERT models can be changed as per the list provided. "