pritamdeka commited on
Commit
01f5167
Β·
1 Parent(s): 1e4e5ac

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +59 -0
app.py CHANGED
@@ -1,3 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  word_embedding_model = models.Transformer('cambridgeltl/SapBERT-from-PubMedBERT-fulltext')
2
  pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(),
3
  pooling_mode_mean_tokens=True,
 
1
+ import nltk
2
+ import re
3
+
4
+ nltk.download('wordnet')
5
+ nltk.download('punkt')
6
+ nltk.download('stopwords')
7
+ nltk.download('averaged_perceptron_tagger')
8
+ nltk.download('maxent_ne_chunker')
9
+ nltk.download('words')
10
+ nltk.download('brown')
11
+
12
+ from newspaper import Article
13
+ from newspaper import fulltext
14
+ import requests
15
+ import itertools
16
+
17
+ from nltk.tokenize import word_tokenize
18
+ from sentence_transformers import SentenceTransformer
19
+ import pandas as pd
20
+ import numpy as np
21
+ from pandas import ExcelWriter
22
+ from torch.utils.data import DataLoader
23
+ import math
24
+ from sentence_transformers import models, losses
25
+ from sentence_transformers import SentencesDataset, LoggingHandler, SentenceTransformer
26
+ from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator
27
+ from sentence_transformers.readers import *
28
+ from nltk.corpus import stopwords
29
+ stop_words = stopwords.words('english')
30
+ import matplotlib.pyplot as plt
31
+ from sklearn.cluster import KMeans
32
+ from sklearn.decomposition import PCA
33
+ from sklearn.metrics.pairwise import cosine_similarity
34
+ import scipy.spatial
35
+ import networkx as nx
36
+ from nltk.tokenize import sent_tokenize
37
+ import scispacy
38
+ import spacy
39
+ import en_core_sci_lg
40
+ import string
41
+ from nltk.stem.wordnet import WordNetLemmatizer
42
+ import gradio as gr
43
+ import inflect
44
+ from Bio import Entrez
45
+ from sklearn.cluster import KMeans
46
+ from sklearn.cluster import AgglomerativeClustering
47
+ from sklearn.metrics import silhouette_samples, silhouette_score, davies_bouldin_score
48
+ import json
49
+ p = inflect.engine()
50
+
51
+ nlp = en_core_sci_lg.load()
52
+ sp = en_core_sci_lg.load()
53
+ all_stopwords = sp.Defaults.stop_words
54
+
55
+
56
+
57
+
58
+
59
+
60
  word_embedding_model = models.Transformer('cambridgeltl/SapBERT-from-PubMedBERT-fulltext')
61
  pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(),
62
  pooling_mode_mean_tokens=True,