Spaces:
Runtime error
Runtime error
Commit
Β·
01f5167
1
Parent(s):
1e4e5ac
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
word_embedding_model = models.Transformer('cambridgeltl/SapBERT-from-PubMedBERT-fulltext')
|
2 |
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(),
|
3 |
pooling_mode_mean_tokens=True,
|
|
|
1 |
+
import nltk
|
2 |
+
import re
|
3 |
+
|
4 |
+
nltk.download('wordnet')
|
5 |
+
nltk.download('punkt')
|
6 |
+
nltk.download('stopwords')
|
7 |
+
nltk.download('averaged_perceptron_tagger')
|
8 |
+
nltk.download('maxent_ne_chunker')
|
9 |
+
nltk.download('words')
|
10 |
+
nltk.download('brown')
|
11 |
+
|
12 |
+
from newspaper import Article
|
13 |
+
from newspaper import fulltext
|
14 |
+
import requests
|
15 |
+
import itertools
|
16 |
+
|
17 |
+
from nltk.tokenize import word_tokenize
|
18 |
+
from sentence_transformers import SentenceTransformer
|
19 |
+
import pandas as pd
|
20 |
+
import numpy as np
|
21 |
+
from pandas import ExcelWriter
|
22 |
+
from torch.utils.data import DataLoader
|
23 |
+
import math
|
24 |
+
from sentence_transformers import models, losses
|
25 |
+
from sentence_transformers import SentencesDataset, LoggingHandler, SentenceTransformer
|
26 |
+
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator
|
27 |
+
from sentence_transformers.readers import *
|
28 |
+
from nltk.corpus import stopwords
|
29 |
+
stop_words = stopwords.words('english')
|
30 |
+
import matplotlib.pyplot as plt
|
31 |
+
from sklearn.cluster import KMeans
|
32 |
+
from sklearn.decomposition import PCA
|
33 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
34 |
+
import scipy.spatial
|
35 |
+
import networkx as nx
|
36 |
+
from nltk.tokenize import sent_tokenize
|
37 |
+
import scispacy
|
38 |
+
import spacy
|
39 |
+
import en_core_sci_lg
|
40 |
+
import string
|
41 |
+
from nltk.stem.wordnet import WordNetLemmatizer
|
42 |
+
import gradio as gr
|
43 |
+
import inflect
|
44 |
+
from Bio import Entrez
|
45 |
+
from sklearn.cluster import KMeans
|
46 |
+
from sklearn.cluster import AgglomerativeClustering
|
47 |
+
from sklearn.metrics import silhouette_samples, silhouette_score, davies_bouldin_score
|
48 |
+
import json
|
49 |
+
p = inflect.engine()
|
50 |
+
|
51 |
+
nlp = en_core_sci_lg.load()
|
52 |
+
sp = en_core_sci_lg.load()
|
53 |
+
all_stopwords = sp.Defaults.stop_words
|
54 |
+
|
55 |
+
|
56 |
+
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
word_embedding_model = models.Transformer('cambridgeltl/SapBERT-from-PubMedBERT-fulltext')
|
61 |
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(),
|
62 |
pooling_mode_mean_tokens=True,
|