File size: 11,711 Bytes
1f561dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
word_embedding_model = models.Transformer('cambridgeltl/SapBERT-from-PubMedBERT-fulltext')
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(),
                               pooling_mode_mean_tokens=True,
                               pooling_mode_cls_token=False,
                               pooling_mode_max_tokens=False)

embedder = SentenceTransformer(modules=[word_embedding_model, pooling_model])

def search(query):
    Entrez.email = '[email protected]'
    handle = Entrez.esearch(db='pubmed', 
                            sort='relevance', 
                            retmax='5',
                            retmode='xml', 
                            term=query)
    results = Entrez.read(handle)
    return results

def fetch_details(id_list):
    ids = ','.join(id_list)
    Entrez.email = '[email protected]'
    
    handle_1 = Entrez.efetch(db='pubmed', retmode='xml', id=ids)
    results_1 = Entrez.read(handle_1)
    return results_1


def remove_stopwords(sen):
    sen_new = " ".join([i for i in sen if i not in stop_words])
    return sen_new



def keyphrase_generator(article_link, model_1, model_2, max_num_keywords):
  element=[]
  final_textrank_list=[]
  document=[]
  text_doc=[]
  final_list=[]
  score_list=[]
  sum_list=[]
  model_1 = SentenceTransformer(model_1)
  model_2 = SentenceTransformer(model_2)
  url = article_link
  if (url == False):
    print("error")
  html = requests.get(url).text
  article = fulltext(html)
  corpus=sent_tokenize(article)
  indicator_list=['concluded','concludes','in a study', 'concluding','conclude','in sum','in a recent study','therefore','thus','so','hence',
          'as a result','accordingly','consequently','in short','proves that','shows that','suggests that','demonstrates that','found that','observed that',
          'indicated that','suggested that','demonstrated that']
  count_dict={}
  for l in corpus:
    c=0
    for l2 in indicator_list:     
       if l.find(l2)!=-1:#then it is a substring
          c=1
          break           
    if c:#
       count_dict[l]=1
    else:
       count_dict[l]=0
  for sent, score in count_dict.items():
    score_list.append(score)
  clean_sentences_new = pd.Series(corpus).str.replace("[^a-zA-Z]", " ").tolist()
  corpus_embeddings = model_1.encode(clean_sentences_new)
  sim_mat = np.zeros([len(clean_sentences_new), len(clean_sentences_new)])
  for i in range(len(clean_sentences_new)):
    len_embeddings=(len(corpus_embeddings[i]))
    for j in range(len(clean_sentences_new)):
      if i != j:      
        if(len_embeddings == 1024):
          sim_mat[i][j] = cosine_similarity(corpus_embeddings[i].reshape(1,1024), corpus_embeddings[j].reshape(1,1024))[0,0]
        elif(len_embeddings == 768):
          sim_mat[i][j] = cosine_similarity(corpus_embeddings[i].reshape(1,768), corpus_embeddings[j].reshape(1,768))[0,0]
  nx_graph = nx.from_numpy_array(sim_mat)
  scores = nx.pagerank(nx_graph)
  sentences=((scores[i],s) for i,s in enumerate(corpus))
  for elem in sentences:
    element.append(elem[0])
  for sc, lst in zip(score_list, element):  ########## taking the scores from both the lists 
    sum1=sc+lst
    sum_list.append(sum1)
  x=sorted(((sum_list[i],s) for i,s in enumerate(corpus)), reverse=True)
  for elem in x:
    final_textrank_list.append(elem[1])
 
  a=int((10*len(final_textrank_list))/100.0)
  if(a<5):
    total=5
  else:
    total=int(a)
  for i in range(total):
    document.append(final_textrank_list[i])
  doc=" ".join(document)
  for i in document:
    doc_1=nlp(i)
    text_doc.append([X.text for X in doc_1.ents])
  entity_list = [item for sublist in text_doc for item in sublist]
  entity_list = [word for word in entity_list if not word in all_stopwords]
  entity_list = [word_entity for word_entity in entity_list if(p.singular_noun(word_entity) == False)]
  entity_list=list(dict.fromkeys(entity_list))
  doc_embedding = model_2.encode([doc])
  candidates=entity_list
  candidate_embeddings = model_2.encode(candidates)
  distances = cosine_similarity(doc_embedding, candidate_embeddings)
  top_n = max_num_keywords
  keyword_list = [candidates[index] for index in distances.argsort()[0][-top_n:]]
  keywords = '\n'.join(keyword_list) 

  c_len=(len(keyword_list))
  keyword_embeddings = embedder.encode(keyword_list)
  data_embeddings = embedder.encode(keyword_list)

  for num_clusters in range(1, top_n):
    clustering_model = KMeans(n_clusters=num_clusters)
    clustering_model.fit(keyword_embeddings)
    cluster_assignment = clustering_model.labels_
    clustered_sentences = [[] for i in range(num_clusters)]
    for sentence_id, cluster_id in enumerate(cluster_assignment):
      clustered_sentences[cluster_id].append(keyword_list[sentence_id])
    cl_sent_len=(len(clustered_sentences))
    list_cluster=list(clustered_sentences)
    a=len(list_cluster)
    cluster_list_final.append(list_cluster)
    if (c_len==cl_sent_len and c_len>=3) or cl_sent_len==1:
      silhouette_avg = 0
      silhouette_score_list.append(silhouette_avg)
    elif c_len==cl_sent_len==2:
      silhouette_avg = 1
      silhouette_score_list.append(silhouette_avg)
    else:
      silhouette_avg = silhouette_score(keyword_embeddings, cluster_assignment)
      silhouette_score_list.append(silhouette_avg)
  res_dict = dict(zip(silhouette_score_list, cluster_list_final))
  cluster_items=res_dict[max(res_dict)]

  for i in cluster_items:
    z=' OR '.join(i)
    comb.append("("+z+")")
  comb_list.append(comb)
  combinations = []
  for subset in itertools.combinations(comb, 2):
    combinations.append(subset)
  f1_list=[]
  for s in combinations:
    final = ' AND '.join(s)
    f1_list.append("("+final+")")
  f_1=' OR '.join(f1_list)
  final_list.append(f_1)


  #if __name__ == '__main__':
  #for qu in range(len(final_list)):
  results=search(f_1)
  id_list = results['IdList']
  #if(id_list != []):
  papers = fetch_details(id_list)
  abstract_list=[]
  year_list=[]
  journal_list=[]
  title_list=[]
  for i, paper in enumerate(papers['PubmedArticle']):
    x=(json.dumps(papers['PubmedArticle'][i], indent=2))
    t_list=[]
    y = json.loads(x)
    try:
      value_1 = y['MedlineCitation']['Article']['Abstract']['AbstractText']
      value = (y['MedlineCitation']['Article']['ArticleTitle'])
      value_2 = (y['MedlineCitation']['Article']['Journal']['JournalIssue']['PubDate']['Year'])
      value_journal = (y['MedlineCitation']['Article']['Journal']['Title'])
      t_list.append(value)
      title_list.append(t_list)
      year_list.append(value_2)
      abstract_list.append(value_1)
      journal_list.append(value_journal)
    except KeyError:
      value_1 = []
      title_list.append(t_list)
      abstract_list.append(value_1)
      year_list.append(value_2)
      journal_list.append(value_journal)
  mydict={'Title': title_list, 'Abstract':abstract_list, 'Journal Title': journal_list, 'Year': year_list}
  df_new=pd.DataFrame(mydict)
    #print(df_new)        
  #else:
  #  abstract_list=[]
  #  title_list=[]
  #  year_list=[]
  #  journal_list=[]
  #  a=["No result"]
  #  b=["No results"]
  #  abstract_list.append(a)
  #  title_list.append(b)
  #  mydict={'Title': title_list, 'Abstract':abstract_list, 'Journal Title': journal_list, 'Year': year_list}
  #  df_new=pd.DataFrame(mydict)
    #print(df_new)
  return title_list
  
gr.Interface(keyphrase_generator, 
             inputs=[gr.inputs.Textbox(lines=1, placeholder="Provide article web link here",default="", label="Article web link"),
                     gr.inputs.Dropdown(choices=['sentence-transformers/all-mpnet-base-v2',
                                                 'sentence-transformers/all-mpnet-base-v1',                       
                                                 'sentence-transformers/all-distilroberta-v1',
                                                 'sentence-transformers/gtr-t5-large',
                                                 'pritamdeka/S-Bluebert-snli-multinli-stsb',
                                                 'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb',                                                 
                                                 'sentence-transformers/stsb-mpnet-base-v2',
                                                 'sentence-transformers/stsb-roberta-base-v2',
                                                 'sentence-transformers/stsb-distilroberta-base-v2',
                                                 'sentence-transformers/sentence-t5-large',
                                                 'sentence-transformers/sentence-t5-base'], 
                                        type="value", 
                                        default='sentence-transformers/all-mpnet-base-v1', 
                                        label="Select any SBERT model for TextRank from the list below"),
                     gr.inputs.Dropdown(choices=['sentence-transformers/paraphrase-mpnet-base-v2',
                                                 'sentence-transformers/all-mpnet-base-v1',
                                                 'sentence-transformers/paraphrase-distilroberta-base-v1',
                                                 'sentence-transformers/paraphrase-xlm-r-multilingual-v1',
                                                 'sentence-transformers/paraphrase-multilingual-mpnet-base-v2',
                                                 'sentence-transformers/paraphrase-albert-small-v2',
                                                 'sentence-transformers/paraphrase-albert-base-v2',                                                
                                                 'sentence-transformers/paraphrase-MiniLM-L12-v2',
                                                 'sentence-transformers/paraphrase-MiniLM-L6-v2',
                                                 'sentence-transformers/all-MiniLM-L12-v2',
                                                 'sentence-transformers/all-distilroberta-v1',
                                                 'sentence-transformers/paraphrase-TinyBERT-L6-v2',
                                                 'sentence-transformers/paraphrase-MiniLM-L3-v2',
                                                 'sentence-transformers/all-MiniLM-L6-v2'], 
                                        type="value", 
                                        default='sentence-transformers/all-mpnet-base-v1', 
                                        label="Select any SBERT model for keyphrases from the list below"),                     
                     gr.inputs.Slider(minimum=5, maximum=30, step=1, default=10, label="Max Keywords")], 
             outputs=gr.outputs.Textbox(type="auto", label="Stuff"), 
             theme="peach", 
             title="Scientific Article Keyphrase Generator", description="Generates the keyphrases from an article which best describes the article.",
             article= "The work is based on a part of the paper <a href=https://dl.acm.org/doi/10.1145/3487664.3487701>provided here</a>." 
             "\t It uses the TextRank algorithm with SBERT to first find the top sentences and then extracts the keyphrases from those sentences using scispaCy and SBERT."
             "\t The list of SBERT models required in the textboxes can be found in <a href=www.sbert.net/docs/pretrained_models.html>SBERT Pre-trained models hub</a>."
             "\t The default model names are provided which can be changed from the list of pretrained models. "
             "\t The value of output keyphrases can be changed. The default value is 10, minimum is 5 and a maximum value of 30.").launch(share=True,debug=True)