import gradio as gr import whisper import os # Load Whisper model model = whisper.load_model("base") # Function to transcribe audio file using Whisper def transcribe_audio(audio_file): # Check if the audio file exists and print the file path for debugging if audio_file is None: return "No audio file provided." # Debugging: Print the file path to check if Gradio passes the file path correctly print(f"Audio file path: {audio_file}") if not os.path.exists(audio_file): return "The audio file does not exist or is inaccessible." # Load and transcribe the audio file result = model.transcribe(audio_file) transcription = result['text'] return transcription # Gradio interface for transcription iface = gr.Interface( fn=transcribe_audio, # Function to process audio file inputs=gr.Audio(type="filepath"), # Audio upload, pass file path outputs="text", # Output the transcription as text title="Whisper Audio Transcription", description="Upload an audio file and get the transcription." ) # Launch the Gradio interface with a shareable link (required for Colab) iface.launch(share=True)