pritamdeka commited on
Commit
ae87c60
·
verified ·
1 Parent(s): b25a472

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +51 -12
app.py CHANGED
@@ -1,26 +1,65 @@
1
  import gradio as gr
2
  import whisper
 
3
 
4
- # Function to process the audio file
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  def transcribe_audio(model_size, audio):
6
- # Load the Whisper model based on the user's choice
7
  model = whisper.load_model(model_size)
8
-
9
- # Transcribe the audio file
10
  result = model.transcribe(audio)
 
 
 
 
 
 
 
 
 
11
 
12
- return result['text']
 
 
 
 
13
 
14
- # Gradio interface with model selection
 
 
 
 
 
 
 
 
 
 
15
  iface = gr.Interface(
16
- fn=transcribe_audio, # The function that will process the audio and model choice
17
  inputs=[
18
- gr.Dropdown(label="Choose Whisper Model", choices=["tiny", "base", "small", "medium", "large"], value="base"), # Model selection
19
- gr.Audio(type="filepath") # Audio upload input (removed 'source')
 
 
 
 
 
20
  ],
21
- outputs="text", # Output transcription as text
22
- title="Whisper Audio Transcription",
23
- description="Upload an audio file and select a Whisper model to get the transcription."
24
  )
25
 
26
  # Launch the interface
 
1
  import gradio as gr
2
  import whisper
3
+ from transformers import pipeline
4
 
5
+ # Load Whisper model
6
+ whisper_model = whisper.load_model("base")
7
+
8
+ # Load traditional summarization models
9
+ def get_summarizer(model_name):
10
+ if model_name == "BART (facebook/bart-large-cnn)":
11
+ return pipeline("summarization", model="facebook/bart-large-cnn")
12
+ elif model_name == "T5 (t5-small)":
13
+ return pipeline("summarization", model="t5-small")
14
+ elif model_name == "Pegasus (google/pegasus-xsum)":
15
+ return pipeline("summarization", model="google/pegasus-xsum")
16
+ else:
17
+ return None
18
+
19
+ # Function to transcribe audio file using Whisper
20
  def transcribe_audio(model_size, audio):
 
21
  model = whisper.load_model(model_size)
 
 
22
  result = model.transcribe(audio)
23
+ transcription = result['text']
24
+ return transcription
25
+
26
+ # Function to summarize the transcribed text
27
+ def summarize_text(transcription, model_name):
28
+ if len(transcription.strip()) == 0:
29
+ return "No text to summarize."
30
+
31
+ summarizer = get_summarizer(model_name)
32
 
33
+ if summarizer:
34
+ summary = summarizer(transcription, max_length=150, min_length=30, do_sample=False)[0]['summary_text']
35
+ return summary
36
+ else:
37
+ return "Invalid summarization model selected."
38
 
39
+ # Create a Gradio interface that combines transcription and summarization
40
+ def combined_transcription_and_summarization(model_size, summarizer_model, audio):
41
+ # Step 1: Transcribe the audio using Whisper
42
+ transcription = transcribe_audio(model_size, audio)
43
+
44
+ # Step 2: Summarize the transcribed text using the chosen summarizer model
45
+ summary = summarize_text(transcription, summarizer_model)
46
+
47
+ return transcription, summary
48
+
49
+ # Gradio interface for transcription and summarization
50
  iface = gr.Interface(
51
+ fn=combined_transcription_and_summarization, # The combined function
52
  inputs=[
53
+ gr.Dropdown(label="Choose Whisper Model", choices=["tiny", "base", "small", "medium", "large"], value="base"), # Whisper model selection
54
+ gr.Dropdown(label="Choose Summarizer Model", choices=["BART (facebook/bart-large-cnn)", "T5 (t5-small)", "Pegasus (google/pegasus-xsum)"], value="BART (facebook/bart-large-cnn)"), # Summarizer model selection
55
+ gr.Audio(type="filepath") # Audio upload
56
+ ],
57
+ outputs=[
58
+ gr.Textbox(label="Transcription"), # Output for the transcribed text
59
+ gr.Textbox(label="Summary") # Output for the summary
60
  ],
61
+ title="Whisper Audio Transcription and Summarization",
62
+ description="Upload an audio file, choose a Whisper model for transcription, and a summarization model to summarize the transcription."
 
63
  )
64
 
65
  # Launch the interface