Update app.py
Browse files
app.py
CHANGED
@@ -1,26 +1,65 @@
|
|
1 |
import gradio as gr
|
2 |
import whisper
|
|
|
3 |
|
4 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
def transcribe_audio(model_size, audio):
|
6 |
-
# Load the Whisper model based on the user's choice
|
7 |
model = whisper.load_model(model_size)
|
8 |
-
|
9 |
-
# Transcribe the audio file
|
10 |
result = model.transcribe(audio)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
# Gradio interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
iface = gr.Interface(
|
16 |
-
fn=
|
17 |
inputs=[
|
18 |
-
gr.Dropdown(label="Choose Whisper Model", choices=["tiny", "base", "small", "medium", "large"], value="base"), #
|
19 |
-
gr.
|
|
|
|
|
|
|
|
|
|
|
20 |
],
|
21 |
-
|
22 |
-
|
23 |
-
description="Upload an audio file and select a Whisper model to get the transcription."
|
24 |
)
|
25 |
|
26 |
# Launch the interface
|
|
|
1 |
import gradio as gr
|
2 |
import whisper
|
3 |
+
from transformers import pipeline
|
4 |
|
5 |
+
# Load Whisper model
|
6 |
+
whisper_model = whisper.load_model("base")
|
7 |
+
|
8 |
+
# Load traditional summarization models
|
9 |
+
def get_summarizer(model_name):
|
10 |
+
if model_name == "BART (facebook/bart-large-cnn)":
|
11 |
+
return pipeline("summarization", model="facebook/bart-large-cnn")
|
12 |
+
elif model_name == "T5 (t5-small)":
|
13 |
+
return pipeline("summarization", model="t5-small")
|
14 |
+
elif model_name == "Pegasus (google/pegasus-xsum)":
|
15 |
+
return pipeline("summarization", model="google/pegasus-xsum")
|
16 |
+
else:
|
17 |
+
return None
|
18 |
+
|
19 |
+
# Function to transcribe audio file using Whisper
|
20 |
def transcribe_audio(model_size, audio):
|
|
|
21 |
model = whisper.load_model(model_size)
|
|
|
|
|
22 |
result = model.transcribe(audio)
|
23 |
+
transcription = result['text']
|
24 |
+
return transcription
|
25 |
+
|
26 |
+
# Function to summarize the transcribed text
|
27 |
+
def summarize_text(transcription, model_name):
|
28 |
+
if len(transcription.strip()) == 0:
|
29 |
+
return "No text to summarize."
|
30 |
+
|
31 |
+
summarizer = get_summarizer(model_name)
|
32 |
|
33 |
+
if summarizer:
|
34 |
+
summary = summarizer(transcription, max_length=150, min_length=30, do_sample=False)[0]['summary_text']
|
35 |
+
return summary
|
36 |
+
else:
|
37 |
+
return "Invalid summarization model selected."
|
38 |
|
39 |
+
# Create a Gradio interface that combines transcription and summarization
|
40 |
+
def combined_transcription_and_summarization(model_size, summarizer_model, audio):
|
41 |
+
# Step 1: Transcribe the audio using Whisper
|
42 |
+
transcription = transcribe_audio(model_size, audio)
|
43 |
+
|
44 |
+
# Step 2: Summarize the transcribed text using the chosen summarizer model
|
45 |
+
summary = summarize_text(transcription, summarizer_model)
|
46 |
+
|
47 |
+
return transcription, summary
|
48 |
+
|
49 |
+
# Gradio interface for transcription and summarization
|
50 |
iface = gr.Interface(
|
51 |
+
fn=combined_transcription_and_summarization, # The combined function
|
52 |
inputs=[
|
53 |
+
gr.Dropdown(label="Choose Whisper Model", choices=["tiny", "base", "small", "medium", "large"], value="base"), # Whisper model selection
|
54 |
+
gr.Dropdown(label="Choose Summarizer Model", choices=["BART (facebook/bart-large-cnn)", "T5 (t5-small)", "Pegasus (google/pegasus-xsum)"], value="BART (facebook/bart-large-cnn)"), # Summarizer model selection
|
55 |
+
gr.Audio(type="filepath") # Audio upload
|
56 |
+
],
|
57 |
+
outputs=[
|
58 |
+
gr.Textbox(label="Transcription"), # Output for the transcribed text
|
59 |
+
gr.Textbox(label="Summary") # Output for the summary
|
60 |
],
|
61 |
+
title="Whisper Audio Transcription and Summarization",
|
62 |
+
description="Upload an audio file, choose a Whisper model for transcription, and a summarization model to summarize the transcription."
|
|
|
63 |
)
|
64 |
|
65 |
# Launch the interface
|