Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,9 @@
|
|
1 |
import gradio as gr
|
2 |
import whisper
|
3 |
from transformers import pipeline
|
|
|
|
|
|
|
4 |
|
5 |
# Load Whisper model
|
6 |
whisper_model = whisper.load_model("base")
|
@@ -18,9 +21,19 @@ def get_summarizer(model_name):
|
|
18 |
|
19 |
# Function to transcribe audio file using Whisper
|
20 |
def transcribe_audio(model_size, audio):
|
|
|
|
|
|
|
|
|
21 |
model = whisper.load_model(model_size)
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
23 |
transcription = result['text']
|
|
|
24 |
return transcription
|
25 |
|
26 |
# Function to summarize the transcribed text
|
|
|
1 |
import gradio as gr
|
2 |
import whisper
|
3 |
from transformers import pipeline
|
4 |
+
import torch
|
5 |
+
import numpy as np
|
6 |
+
import librosa
|
7 |
|
8 |
# Load Whisper model
|
9 |
whisper_model = whisper.load_model("base")
|
|
|
21 |
|
22 |
# Function to transcribe audio file using Whisper
|
23 |
def transcribe_audio(model_size, audio):
|
24 |
+
if audio is None:
|
25 |
+
return "No audio file provided."
|
26 |
+
|
27 |
+
# Load the selected Whisper model
|
28 |
model = whisper.load_model(model_size)
|
29 |
+
|
30 |
+
# Load and convert audio using librosa
|
31 |
+
audio_data, sample_rate = librosa.load(audio, sr=16000)
|
32 |
+
|
33 |
+
# Transcribe the audio file
|
34 |
+
result = model.transcribe(audio_data)
|
35 |
transcription = result['text']
|
36 |
+
|
37 |
return transcription
|
38 |
|
39 |
# Function to summarize the transcribed text
|