Spaces:
Runtime error
Runtime error
Update ip_adapter/attention_processor.py
Browse files- ip_adapter/attention_processor.py +354 -57
ip_adapter/attention_processor.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
import torch
|
| 2 |
import torch.nn as nn
|
| 3 |
import torch.nn.functional as F
|
|
@@ -6,31 +7,33 @@ try:
|
|
| 6 |
import xformers
|
| 7 |
import xformers.ops
|
| 8 |
xformers_available = True
|
| 9 |
-
except Exception:
|
| 10 |
xformers_available = False
|
| 11 |
|
| 12 |
-
|
| 13 |
-
# Region Controller (unchanged)
|
| 14 |
-
class RegionControler:
|
| 15 |
def __init__(self) -> None:
|
| 16 |
self.prompt_image_conditioning = []
|
| 17 |
-
|
| 18 |
region_control = RegionControler()
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
def __init__(self):
|
| 30 |
super().__init__()
|
| 31 |
|
| 32 |
-
def
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
residual = hidden_states
|
| 35 |
|
| 36 |
if attn.spatial_norm is not None:
|
|
@@ -41,60 +44,286 @@ class BaseAttnProcessor(nn.Module):
|
|
| 41 |
if input_ndim == 4:
|
| 42 |
batch_size, channel, height, width = hidden_states.shape
|
| 43 |
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
| 44 |
-
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
if encoder_hidden_states is None:
|
| 48 |
encoder_hidden_states = hidden_states
|
| 49 |
elif attn.norm_cross:
|
| 50 |
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
| 51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
| 53 |
|
| 54 |
if attn.group_norm is not None:
|
| 55 |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
| 56 |
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
-
def _apply_attention(self, attn, query, key, value, attention_mask):
|
| 60 |
-
"""Handles the actual attention operation using either xformers or standard PyTorch"""
|
| 61 |
if xformers_available:
|
| 62 |
-
|
| 63 |
else:
|
| 64 |
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
query = attn.to_q(hidden_states)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
key = attn.to_k(encoder_hidden_states)
|
| 76 |
value = attn.to_v(encoder_hidden_states)
|
| 77 |
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
hidden_states = attn.batch_to_head_dim(hidden_states)
|
| 81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
hidden_states = attn.to_out[0](hidden_states)
|
|
|
|
| 83 |
hidden_states = attn.to_out[1](hidden_states)
|
| 84 |
|
| 85 |
if input_ndim == 4:
|
| 86 |
-
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size,
|
| 87 |
|
| 88 |
if attn.residual_connection:
|
| 89 |
hidden_states = hidden_states + residual
|
| 90 |
|
| 91 |
-
|
|
|
|
|
|
|
| 92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
-
# Optimized IPAttnProcessor
|
| 95 |
-
class IPAttnProcessor(BaseAttnProcessor):
|
| 96 |
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4):
|
| 97 |
super().__init__()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
self.hidden_size = hidden_size
|
| 99 |
self.cross_attention_dim = cross_attention_dim
|
| 100 |
self.scale = scale
|
|
@@ -102,49 +331,117 @@ class IPAttnProcessor(BaseAttnProcessor):
|
|
| 102 |
|
| 103 |
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
| 104 |
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
| 105 |
-
self.apply(init_weights)
|
| 106 |
|
| 107 |
-
def forward(
|
| 108 |
-
|
| 109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
-
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
query = attn.to_q(hidden_states)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
key = attn.to_k(encoder_hidden_states)
|
| 116 |
value = attn.to_v(encoder_hidden_states)
|
| 117 |
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
hidden_states = attn.batch_to_head_dim(hidden_states)
|
| 121 |
|
| 122 |
-
|
| 123 |
-
ip_key = attn.head_to_batch_dim(self.to_k_ip(ip_hidden_states))
|
| 124 |
-
ip_value = attn.head_to_batch_dim(self.to_v_ip(ip_hidden_states))
|
| 125 |
|
| 126 |
-
|
| 127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
|
| 129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
if len(region_control.prompt_image_conditioning) == 1:
|
| 131 |
-
region_mask = region_control.prompt_image_conditioning[0].get(
|
| 132 |
if region_mask is not None:
|
| 133 |
-
|
|
|
|
|
|
|
|
|
|
| 134 |
else:
|
| 135 |
mask = torch.ones_like(ip_hidden_states)
|
| 136 |
-
ip_hidden_states
|
| 137 |
|
| 138 |
hidden_states = hidden_states + self.scale * ip_hidden_states
|
| 139 |
|
| 140 |
-
#
|
| 141 |
hidden_states = attn.to_out[0](hidden_states)
|
|
|
|
| 142 |
hidden_states = attn.to_out[1](hidden_states)
|
| 143 |
|
| 144 |
if input_ndim == 4:
|
| 145 |
-
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size,
|
| 146 |
|
| 147 |
if attn.residual_connection:
|
| 148 |
hidden_states = hidden_states + residual
|
| 149 |
|
| 150 |
-
|
|
|
|
|
|
|
|
|
| 1 |
+
# modified from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py
|
| 2 |
import torch
|
| 3 |
import torch.nn as nn
|
| 4 |
import torch.nn.functional as F
|
|
|
|
| 7 |
import xformers
|
| 8 |
import xformers.ops
|
| 9 |
xformers_available = True
|
| 10 |
+
except Exception as e:
|
| 11 |
xformers_available = False
|
| 12 |
|
| 13 |
+
class RegionControler(object):
|
|
|
|
|
|
|
| 14 |
def __init__(self) -> None:
|
| 15 |
self.prompt_image_conditioning = []
|
|
|
|
| 16 |
region_control = RegionControler()
|
| 17 |
|
| 18 |
+
class AttnProcessor(nn.Module):
|
| 19 |
+
r"""
|
| 20 |
+
Default processor for performing attention-related computations.
|
| 21 |
+
"""
|
| 22 |
+
def __init__(
|
| 23 |
+
self,
|
| 24 |
+
hidden_size=None,
|
| 25 |
+
cross_attention_dim=None,
|
| 26 |
+
):
|
|
|
|
| 27 |
super().__init__()
|
| 28 |
|
| 29 |
+
def forward(
|
| 30 |
+
self,
|
| 31 |
+
attn,
|
| 32 |
+
hidden_states,
|
| 33 |
+
encoder_hidden_states=None,
|
| 34 |
+
attention_mask=None,
|
| 35 |
+
temb=None,
|
| 36 |
+
):
|
| 37 |
residual = hidden_states
|
| 38 |
|
| 39 |
if attn.spatial_norm is not None:
|
|
|
|
| 44 |
if input_ndim == 4:
|
| 45 |
batch_size, channel, height, width = hidden_states.shape
|
| 46 |
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
| 47 |
+
|
| 48 |
+
batch_size, sequence_length, _ = (
|
| 49 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
| 50 |
+
)
|
| 51 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
| 52 |
+
|
| 53 |
+
if attn.group_norm is not None:
|
| 54 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
| 55 |
+
|
| 56 |
+
query = attn.to_q(hidden_states)
|
| 57 |
|
| 58 |
if encoder_hidden_states is None:
|
| 59 |
encoder_hidden_states = hidden_states
|
| 60 |
elif attn.norm_cross:
|
| 61 |
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
| 62 |
|
| 63 |
+
key = attn.to_k(encoder_hidden_states)
|
| 64 |
+
value = attn.to_v(encoder_hidden_states)
|
| 65 |
+
|
| 66 |
+
query = attn.head_to_batch_dim(query)
|
| 67 |
+
key = attn.head_to_batch_dim(key)
|
| 68 |
+
value = attn.head_to_batch_dim(value)
|
| 69 |
+
|
| 70 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
| 71 |
+
hidden_states = torch.bmm(attention_probs, value)
|
| 72 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
| 73 |
+
|
| 74 |
+
# linear proj
|
| 75 |
+
hidden_states = attn.to_out[0](hidden_states)
|
| 76 |
+
# dropout
|
| 77 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 78 |
+
|
| 79 |
+
if input_ndim == 4:
|
| 80 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
| 81 |
+
|
| 82 |
+
if attn.residual_connection:
|
| 83 |
+
hidden_states = hidden_states + residual
|
| 84 |
+
|
| 85 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
| 86 |
+
|
| 87 |
+
return hidden_states
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
class IPAttnProcessor(nn.Module):
|
| 91 |
+
r"""
|
| 92 |
+
Attention processor for IP-Adapater.
|
| 93 |
+
Args:
|
| 94 |
+
hidden_size (`int`):
|
| 95 |
+
The hidden size of the attention layer.
|
| 96 |
+
cross_attention_dim (`int`):
|
| 97 |
+
The number of channels in the `encoder_hidden_states`.
|
| 98 |
+
scale (`float`, defaults to 1.0):
|
| 99 |
+
the weight scale of image prompt.
|
| 100 |
+
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
|
| 101 |
+
The context length of the image features.
|
| 102 |
+
"""
|
| 103 |
+
|
| 104 |
+
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4):
|
| 105 |
+
super().__init__()
|
| 106 |
+
|
| 107 |
+
self.hidden_size = hidden_size
|
| 108 |
+
self.cross_attention_dim = cross_attention_dim
|
| 109 |
+
self.scale = scale
|
| 110 |
+
self.num_tokens = num_tokens
|
| 111 |
+
|
| 112 |
+
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
| 113 |
+
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
| 114 |
+
|
| 115 |
+
def forward(
|
| 116 |
+
self,
|
| 117 |
+
attn,
|
| 118 |
+
hidden_states,
|
| 119 |
+
encoder_hidden_states=None,
|
| 120 |
+
attention_mask=None,
|
| 121 |
+
temb=None,
|
| 122 |
+
):
|
| 123 |
+
residual = hidden_states
|
| 124 |
+
|
| 125 |
+
if attn.spatial_norm is not None:
|
| 126 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
| 127 |
+
|
| 128 |
+
input_ndim = hidden_states.ndim
|
| 129 |
+
|
| 130 |
+
if input_ndim == 4:
|
| 131 |
+
batch_size, channel, height, width = hidden_states.shape
|
| 132 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
| 133 |
+
|
| 134 |
+
batch_size, sequence_length, _ = (
|
| 135 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
| 136 |
+
)
|
| 137 |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
| 138 |
|
| 139 |
if attn.group_norm is not None:
|
| 140 |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
| 141 |
|
| 142 |
+
query = attn.to_q(hidden_states)
|
| 143 |
+
|
| 144 |
+
if encoder_hidden_states is None:
|
| 145 |
+
encoder_hidden_states = hidden_states
|
| 146 |
+
else:
|
| 147 |
+
# get encoder_hidden_states, ip_hidden_states
|
| 148 |
+
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
| 149 |
+
encoder_hidden_states, ip_hidden_states = encoder_hidden_states[:, :end_pos, :], encoder_hidden_states[:, end_pos:, :]
|
| 150 |
+
if attn.norm_cross:
|
| 151 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
| 152 |
+
|
| 153 |
+
key = attn.to_k(encoder_hidden_states)
|
| 154 |
+
value = attn.to_v(encoder_hidden_states)
|
| 155 |
+
|
| 156 |
+
query = attn.head_to_batch_dim(query)
|
| 157 |
+
key = attn.head_to_batch_dim(key)
|
| 158 |
+
value = attn.head_to_batch_dim(value)
|
| 159 |
|
|
|
|
|
|
|
| 160 |
if xformers_available:
|
| 161 |
+
hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask)
|
| 162 |
else:
|
| 163 |
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
| 164 |
+
hidden_states = torch.bmm(attention_probs, value)
|
| 165 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
| 166 |
+
|
| 167 |
+
# for ip-adapter
|
| 168 |
+
ip_key = self.to_k_ip(ip_hidden_states)
|
| 169 |
+
ip_value = self.to_v_ip(ip_hidden_states)
|
| 170 |
+
|
| 171 |
+
ip_key = attn.head_to_batch_dim(ip_key)
|
| 172 |
+
ip_value = attn.head_to_batch_dim(ip_value)
|
| 173 |
+
|
| 174 |
+
if xformers_available:
|
| 175 |
+
ip_hidden_states = self._memory_efficient_attention_xformers(query, ip_key, ip_value, None)
|
| 176 |
+
else:
|
| 177 |
+
ip_attention_probs = attn.get_attention_scores(query, ip_key, None)
|
| 178 |
+
ip_hidden_states = torch.bmm(ip_attention_probs, ip_value)
|
| 179 |
+
ip_hidden_states = attn.batch_to_head_dim(ip_hidden_states)
|
| 180 |
+
|
| 181 |
+
# region control
|
| 182 |
+
if len(region_control.prompt_image_conditioning) == 1:
|
| 183 |
+
region_mask = region_control.prompt_image_conditioning[0].get('region_mask', None)
|
| 184 |
+
if region_mask is not None:
|
| 185 |
+
h, w = region_mask.shape[:2]
|
| 186 |
+
ratio = (h * w / query.shape[1]) ** 0.5
|
| 187 |
+
mask = F.interpolate(region_mask[None, None], scale_factor=1/ratio, mode='nearest').reshape([1, -1, 1])
|
| 188 |
+
else:
|
| 189 |
+
mask = torch.ones_like(ip_hidden_states)
|
| 190 |
+
ip_hidden_states = ip_hidden_states * mask
|
| 191 |
+
|
| 192 |
+
hidden_states = hidden_states + self.scale * ip_hidden_states
|
| 193 |
|
| 194 |
+
# linear proj
|
| 195 |
+
hidden_states = attn.to_out[0](hidden_states)
|
| 196 |
+
# dropout
|
| 197 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 198 |
+
|
| 199 |
+
if input_ndim == 4:
|
| 200 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
| 201 |
+
|
| 202 |
+
if attn.residual_connection:
|
| 203 |
+
hidden_states = hidden_states + residual
|
| 204 |
+
|
| 205 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
| 206 |
+
|
| 207 |
+
return hidden_states
|
| 208 |
|
| 209 |
+
|
| 210 |
+
def _memory_efficient_attention_xformers(self, query, key, value, attention_mask):
|
| 211 |
+
# TODO attention_mask
|
| 212 |
+
query = query.contiguous()
|
| 213 |
+
key = key.contiguous()
|
| 214 |
+
value = value.contiguous()
|
| 215 |
+
hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask)
|
| 216 |
+
# hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
|
| 217 |
+
return hidden_states
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
class AttnProcessor2_0(torch.nn.Module):
|
| 221 |
+
r"""
|
| 222 |
+
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
| 223 |
+
"""
|
| 224 |
+
def __init__(
|
| 225 |
+
self,
|
| 226 |
+
hidden_size=None,
|
| 227 |
+
cross_attention_dim=None,
|
| 228 |
+
):
|
| 229 |
+
super().__init__()
|
| 230 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
| 231 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
| 232 |
+
|
| 233 |
+
def forward(
|
| 234 |
+
self,
|
| 235 |
+
attn,
|
| 236 |
+
hidden_states,
|
| 237 |
+
encoder_hidden_states=None,
|
| 238 |
+
attention_mask=None,
|
| 239 |
+
temb=None,
|
| 240 |
+
):
|
| 241 |
+
residual = hidden_states
|
| 242 |
+
|
| 243 |
+
if attn.spatial_norm is not None:
|
| 244 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
| 245 |
+
|
| 246 |
+
input_ndim = hidden_states.ndim
|
| 247 |
+
|
| 248 |
+
if input_ndim == 4:
|
| 249 |
+
batch_size, channel, height, width = hidden_states.shape
|
| 250 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
| 251 |
+
|
| 252 |
+
batch_size, sequence_length, _ = (
|
| 253 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
| 254 |
+
)
|
| 255 |
+
|
| 256 |
+
if attention_mask is not None:
|
| 257 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
| 258 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
| 259 |
+
# (batch, heads, source_length, target_length)
|
| 260 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
| 261 |
+
|
| 262 |
+
if attn.group_norm is not None:
|
| 263 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
| 264 |
|
| 265 |
query = attn.to_q(hidden_states)
|
| 266 |
+
|
| 267 |
+
if encoder_hidden_states is None:
|
| 268 |
+
encoder_hidden_states = hidden_states
|
| 269 |
+
elif attn.norm_cross:
|
| 270 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
| 271 |
+
|
| 272 |
key = attn.to_k(encoder_hidden_states)
|
| 273 |
value = attn.to_v(encoder_hidden_states)
|
| 274 |
|
| 275 |
+
inner_dim = key.shape[-1]
|
| 276 |
+
head_dim = inner_dim // attn.heads
|
|
|
|
| 277 |
|
| 278 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 279 |
+
|
| 280 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 281 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 282 |
+
|
| 283 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
| 284 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
| 285 |
+
hidden_states = F.scaled_dot_product_attention(
|
| 286 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
| 287 |
+
)
|
| 288 |
+
|
| 289 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
| 290 |
+
hidden_states = hidden_states.to(query.dtype)
|
| 291 |
+
|
| 292 |
+
# linear proj
|
| 293 |
hidden_states = attn.to_out[0](hidden_states)
|
| 294 |
+
# dropout
|
| 295 |
hidden_states = attn.to_out[1](hidden_states)
|
| 296 |
|
| 297 |
if input_ndim == 4:
|
| 298 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
| 299 |
|
| 300 |
if attn.residual_connection:
|
| 301 |
hidden_states = hidden_states + residual
|
| 302 |
|
| 303 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
| 304 |
+
|
| 305 |
+
return hidden_states
|
| 306 |
|
| 307 |
+
class IPAttnProcessor2_0(torch.nn.Module):
|
| 308 |
+
r"""
|
| 309 |
+
Attention processor for IP-Adapater for PyTorch 2.0.
|
| 310 |
+
Args:
|
| 311 |
+
hidden_size (`int`):
|
| 312 |
+
The hidden size of the attention layer.
|
| 313 |
+
cross_attention_dim (`int`):
|
| 314 |
+
The number of channels in the `encoder_hidden_states`.
|
| 315 |
+
scale (`float`, defaults to 1.0):
|
| 316 |
+
the weight scale of image prompt.
|
| 317 |
+
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
|
| 318 |
+
The context length of the image features.
|
| 319 |
+
"""
|
| 320 |
|
|
|
|
|
|
|
| 321 |
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4):
|
| 322 |
super().__init__()
|
| 323 |
+
|
| 324 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
| 325 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
| 326 |
+
|
| 327 |
self.hidden_size = hidden_size
|
| 328 |
self.cross_attention_dim = cross_attention_dim
|
| 329 |
self.scale = scale
|
|
|
|
| 331 |
|
| 332 |
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
| 333 |
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
|
|
|
| 334 |
|
| 335 |
+
def forward(
|
| 336 |
+
self,
|
| 337 |
+
attn,
|
| 338 |
+
hidden_states,
|
| 339 |
+
encoder_hidden_states=None,
|
| 340 |
+
attention_mask=None,
|
| 341 |
+
temb=None,
|
| 342 |
+
):
|
| 343 |
+
residual = hidden_states
|
| 344 |
+
|
| 345 |
+
if attn.spatial_norm is not None:
|
| 346 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
| 347 |
+
|
| 348 |
+
input_ndim = hidden_states.ndim
|
| 349 |
+
|
| 350 |
+
if input_ndim == 4:
|
| 351 |
+
batch_size, channel, height, width = hidden_states.shape
|
| 352 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
| 353 |
+
|
| 354 |
+
batch_size, sequence_length, _ = (
|
| 355 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
| 356 |
+
)
|
| 357 |
|
| 358 |
+
if attention_mask is not None:
|
| 359 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
| 360 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
| 361 |
+
# (batch, heads, source_length, target_length)
|
| 362 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
| 363 |
+
|
| 364 |
+
if attn.group_norm is not None:
|
| 365 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
| 366 |
|
| 367 |
query = attn.to_q(hidden_states)
|
| 368 |
+
|
| 369 |
+
if encoder_hidden_states is None:
|
| 370 |
+
encoder_hidden_states = hidden_states
|
| 371 |
+
else:
|
| 372 |
+
# get encoder_hidden_states, ip_hidden_states
|
| 373 |
+
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
| 374 |
+
encoder_hidden_states, ip_hidden_states = (
|
| 375 |
+
encoder_hidden_states[:, :end_pos, :],
|
| 376 |
+
encoder_hidden_states[:, end_pos:, :],
|
| 377 |
+
)
|
| 378 |
+
if attn.norm_cross:
|
| 379 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
| 380 |
+
|
| 381 |
key = attn.to_k(encoder_hidden_states)
|
| 382 |
value = attn.to_v(encoder_hidden_states)
|
| 383 |
|
| 384 |
+
inner_dim = key.shape[-1]
|
| 385 |
+
head_dim = inner_dim // attn.heads
|
|
|
|
| 386 |
|
| 387 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
|
|
|
|
|
| 388 |
|
| 389 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 390 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 391 |
+
|
| 392 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
| 393 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
| 394 |
+
hidden_states = F.scaled_dot_product_attention(
|
| 395 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
| 396 |
+
)
|
| 397 |
+
|
| 398 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
| 399 |
+
hidden_states = hidden_states.to(query.dtype)
|
| 400 |
+
|
| 401 |
+
# for ip-adapter
|
| 402 |
+
ip_key = self.to_k_ip(ip_hidden_states)
|
| 403 |
+
ip_value = self.to_v_ip(ip_hidden_states)
|
| 404 |
|
| 405 |
+
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 406 |
+
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 407 |
+
|
| 408 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
| 409 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
| 410 |
+
ip_hidden_states = F.scaled_dot_product_attention(
|
| 411 |
+
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
|
| 412 |
+
)
|
| 413 |
+
with torch.no_grad():
|
| 414 |
+
self.attn_map = query @ ip_key.transpose(-2, -1).softmax(dim=-1)
|
| 415 |
+
#print(self.attn_map.shape)
|
| 416 |
+
|
| 417 |
+
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
| 418 |
+
ip_hidden_states = ip_hidden_states.to(query.dtype)
|
| 419 |
+
|
| 420 |
+
# region control
|
| 421 |
if len(region_control.prompt_image_conditioning) == 1:
|
| 422 |
+
region_mask = region_control.prompt_image_conditioning[0].get('region_mask', None)
|
| 423 |
if region_mask is not None:
|
| 424 |
+
query = query.reshape([-1, query.shape[-2], query.shape[-1]])
|
| 425 |
+
h, w = region_mask.shape[:2]
|
| 426 |
+
ratio = (h * w / query.shape[1]) ** 0.5
|
| 427 |
+
mask = F.interpolate(region_mask[None, None], scale_factor=1/ratio, mode='nearest').reshape([1, -1, 1])
|
| 428 |
else:
|
| 429 |
mask = torch.ones_like(ip_hidden_states)
|
| 430 |
+
ip_hidden_states = ip_hidden_states * mask
|
| 431 |
|
| 432 |
hidden_states = hidden_states + self.scale * ip_hidden_states
|
| 433 |
|
| 434 |
+
# linear proj
|
| 435 |
hidden_states = attn.to_out[0](hidden_states)
|
| 436 |
+
# dropout
|
| 437 |
hidden_states = attn.to_out[1](hidden_states)
|
| 438 |
|
| 439 |
if input_ndim == 4:
|
| 440 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
| 441 |
|
| 442 |
if attn.residual_connection:
|
| 443 |
hidden_states = hidden_states + residual
|
| 444 |
|
| 445 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
| 446 |
+
|
| 447 |
+
return hidden_states
|