Spaces:
Runtime error
Runtime error
Update ip_adapter/resampler.py
Browse files- ip_adapter/resampler.py +42 -80
ip_adapter/resampler.py
CHANGED
|
@@ -1,31 +1,24 @@
|
|
| 1 |
-
# modified from https://github.com/mlfoundations/open_flamingo/blob/main/open_flamingo/src/helpers.py
|
| 2 |
-
import math
|
| 3 |
-
|
| 4 |
import torch
|
| 5 |
import torch.nn as nn
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
|
|
|
|
|
|
| 7 |
|
| 8 |
-
# FFN
|
| 9 |
-
def FeedForward(dim, mult=4):
|
| 10 |
-
inner_dim = int(dim * mult)
|
| 11 |
-
return nn.Sequential(
|
| 12 |
-
nn.LayerNorm(dim),
|
| 13 |
-
nn.Linear(dim, inner_dim, bias=False),
|
| 14 |
-
nn.GELU(),
|
| 15 |
-
nn.Linear(inner_dim, dim, bias=False),
|
| 16 |
-
)
|
| 17 |
-
|
| 18 |
-
|
| 19 |
def reshape_tensor(x, heads):
|
| 20 |
-
bs, length,
|
| 21 |
-
|
| 22 |
-
x = x.view(bs, length, heads, -1)
|
| 23 |
-
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
|
| 24 |
-
x = x.transpose(1, 2)
|
| 25 |
-
# (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
|
| 26 |
-
x = x.reshape(bs, heads, length, -1)
|
| 27 |
-
return x
|
| 28 |
-
|
| 29 |
|
| 30 |
class PerceiverAttention(nn.Module):
|
| 31 |
def __init__(self, *, dim, dim_head=64, heads=8):
|
|
@@ -38,84 +31,53 @@ class PerceiverAttention(nn.Module):
|
|
| 38 |
self.norm1 = nn.LayerNorm(dim)
|
| 39 |
self.norm2 = nn.LayerNorm(dim)
|
| 40 |
|
| 41 |
-
self.to_q = nn.Linear(dim, inner_dim
|
| 42 |
-
self.to_kv = nn.Linear(dim, inner_dim * 2
|
| 43 |
-
self.to_out = nn.Linear(inner_dim, dim
|
| 44 |
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
def forward(self, x, latents):
|
| 47 |
-
"""
|
| 48 |
-
Args:
|
| 49 |
-
x (torch.Tensor): image features
|
| 50 |
-
shape (b, n1, D)
|
| 51 |
-
latent (torch.Tensor): latent features
|
| 52 |
-
shape (b, n2, D)
|
| 53 |
-
"""
|
| 54 |
x = self.norm1(x)
|
| 55 |
latents = self.norm2(latents)
|
| 56 |
-
|
| 57 |
-
b, l, _ = latents.shape
|
| 58 |
|
| 59 |
q = self.to_q(latents)
|
| 60 |
kv_input = torch.cat((x, latents), dim=-2)
|
| 61 |
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
|
| 62 |
-
|
| 63 |
-
q = reshape_tensor(q, self.heads)
|
| 64 |
-
k = reshape_tensor(k, self.heads)
|
| 65 |
-
v = reshape_tensor(v, self.heads)
|
| 66 |
-
|
| 67 |
-
# attention
|
| 68 |
-
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
|
| 69 |
-
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
|
| 70 |
-
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
| 71 |
-
out = weight @ v
|
| 72 |
-
|
| 73 |
-
out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
|
| 74 |
|
| 75 |
-
|
| 76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
class Resampler(nn.Module):
|
| 79 |
-
def __init__(
|
| 80 |
-
self,
|
| 81 |
-
dim=1024,
|
| 82 |
-
depth=8,
|
| 83 |
-
dim_head=64,
|
| 84 |
-
heads=16,
|
| 85 |
-
num_queries=8,
|
| 86 |
-
embedding_dim=768,
|
| 87 |
-
output_dim=1024,
|
| 88 |
-
ff_mult=4,
|
| 89 |
-
):
|
| 90 |
super().__init__()
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
self.proj_in = nn.Linear(embedding_dim, dim)
|
| 95 |
|
|
|
|
| 96 |
self.proj_out = nn.Linear(dim, output_dim)
|
| 97 |
self.norm_out = nn.LayerNorm(output_dim)
|
| 98 |
-
|
| 99 |
-
self.layers = nn.ModuleList([
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
FeedForward(dim=dim, mult=ff_mult),
|
| 106 |
-
]
|
| 107 |
-
)
|
| 108 |
-
)
|
| 109 |
|
| 110 |
def forward(self, x):
|
| 111 |
-
|
| 112 |
latents = self.latents.repeat(x.size(0), 1, 1)
|
| 113 |
-
|
| 114 |
x = self.proj_in(x)
|
| 115 |
-
|
| 116 |
for attn, ff in self.layers:
|
| 117 |
latents = attn(x, latents) + latents
|
| 118 |
latents = ff(latents) + latents
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
return self.norm_out(latents)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
import math
|
| 5 |
+
|
| 6 |
+
class FeedForward(nn.Module):
|
| 7 |
+
def __init__(self, dim, mult=4):
|
| 8 |
+
super().__init__()
|
| 9 |
+
self.norm = nn.LayerNorm(dim)
|
| 10 |
+
self.fc1 = nn.Linear(dim, int(dim * mult))
|
| 11 |
+
self.act = nn.GELU()
|
| 12 |
+
self.fc2 = nn.Linear(int(dim * mult), dim)
|
| 13 |
+
nn.init.xavier_uniform_(self.fc1.weight)
|
| 14 |
+
nn.init.xavier_uniform_(self.fc2.weight)
|
| 15 |
|
| 16 |
+
def forward(self, x):
|
| 17 |
+
return x + self.fc2(self.act(self.fc1(self.norm(x))))
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
def reshape_tensor(x, heads):
|
| 20 |
+
bs, length, _ = x.shape
|
| 21 |
+
return x.view(bs, length, heads, -1).transpose(1, 2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
class PerceiverAttention(nn.Module):
|
| 24 |
def __init__(self, *, dim, dim_head=64, heads=8):
|
|
|
|
| 31 |
self.norm1 = nn.LayerNorm(dim)
|
| 32 |
self.norm2 = nn.LayerNorm(dim)
|
| 33 |
|
| 34 |
+
self.to_q = nn.Linear(dim, inner_dim)
|
| 35 |
+
self.to_kv = nn.Linear(dim, inner_dim * 2)
|
| 36 |
+
self.to_out = nn.Linear(inner_dim, dim)
|
| 37 |
|
| 38 |
+
nn.init.xavier_uniform_(self.to_q.weight)
|
| 39 |
+
nn.init.xavier_uniform_(self.to_kv.weight)
|
| 40 |
+
nn.init.xavier_uniform_(self.to_out.weight)
|
| 41 |
|
| 42 |
def forward(self, x, latents):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
x = self.norm1(x)
|
| 44 |
latents = self.norm2(latents)
|
|
|
|
|
|
|
| 45 |
|
| 46 |
q = self.to_q(latents)
|
| 47 |
kv_input = torch.cat((x, latents), dim=-2)
|
| 48 |
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
+
q, k, v = map(lambda t: reshape_tensor(t, self.heads), (q, k, v))
|
| 51 |
|
| 52 |
+
attn_score = (q @ k.transpose(-2, -1)) * self.scale
|
| 53 |
+
attn_weight = F.softmax(attn_score, dim=-1)
|
| 54 |
+
out = (attn_weight @ v).transpose(1, 2).reshape(latents.shape)
|
| 55 |
+
|
| 56 |
+
return self.to_out(out)
|
| 57 |
|
| 58 |
class Resampler(nn.Module):
|
| 59 |
+
def __init__(self, dim=1024, depth=8, dim_head=64, heads=16, num_queries=8, embedding_dim=768, output_dim=1024, ff_mult=4):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
super().__init__()
|
| 61 |
+
self.latents = nn.Parameter(torch.empty(1, num_queries, dim))
|
| 62 |
+
nn.init.normal_(self.latents, mean=0, std=dim**-0.5)
|
|
|
|
|
|
|
| 63 |
|
| 64 |
+
self.proj_in = nn.Linear(embedding_dim, dim)
|
| 65 |
self.proj_out = nn.Linear(dim, output_dim)
|
| 66 |
self.norm_out = nn.LayerNorm(output_dim)
|
| 67 |
+
|
| 68 |
+
self.layers = nn.ModuleList([
|
| 69 |
+
nn.ModuleList([
|
| 70 |
+
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
|
| 71 |
+
FeedForward(dim=dim, mult=ff_mult),
|
| 72 |
+
]) for _ in range(depth)
|
| 73 |
+
])
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
def forward(self, x):
|
|
|
|
| 76 |
latents = self.latents.repeat(x.size(0), 1, 1)
|
|
|
|
| 77 |
x = self.proj_in(x)
|
| 78 |
+
|
| 79 |
for attn, ff in self.layers:
|
| 80 |
latents = attn(x, latents) + latents
|
| 81 |
latents = ff(latents) + latents
|
| 82 |
+
|
| 83 |
+
return self.norm_out(self.proj_out(latents))
|
|
|