Spaces:
Sleeping
Sleeping
"""Test OpenSearch functionality.""" | |
import pytest | |
from langchain.docstore.document import Document | |
from langchain.vectorstores.opensearch_vector_search import ( | |
PAINLESS_SCRIPTING_SEARCH, | |
SCRIPT_SCORING_SEARCH, | |
OpenSearchVectorSearch, | |
) | |
from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings | |
DEFAULT_OPENSEARCH_URL = "http://localhost:9200" | |
texts = ["foo", "bar", "baz"] | |
def test_opensearch() -> None: | |
"""Test end to end indexing and search using Approximate Search.""" | |
docsearch = OpenSearchVectorSearch.from_texts( | |
texts, FakeEmbeddings(), opensearch_url=DEFAULT_OPENSEARCH_URL | |
) | |
output = docsearch.similarity_search("foo", k=1) | |
assert output == [Document(page_content="foo")] | |
def test_similarity_search_with_score() -> None: | |
"""Test similarity search with score using Approximate Search.""" | |
metadatas = [{"page": i} for i in range(len(texts))] | |
docsearch = OpenSearchVectorSearch.from_texts( | |
texts, | |
FakeEmbeddings(), | |
metadatas=metadatas, | |
opensearch_url=DEFAULT_OPENSEARCH_URL, | |
) | |
output = docsearch.similarity_search_with_score("foo", k=2) | |
assert output == [ | |
(Document(page_content="foo", metadata={"page": 0}), 1.0), | |
(Document(page_content="bar", metadata={"page": 1}), 0.5), | |
] | |
def test_opensearch_with_custom_field_name() -> None: | |
"""Test indexing and search using custom vector field and text field name.""" | |
docsearch = OpenSearchVectorSearch.from_texts( | |
texts, | |
FakeEmbeddings(), | |
opensearch_url=DEFAULT_OPENSEARCH_URL, | |
vector_field="my_vector", | |
text_field="custom_text", | |
) | |
output = docsearch.similarity_search( | |
"foo", k=1, vector_field="my_vector", text_field="custom_text" | |
) | |
assert output == [Document(page_content="foo")] | |
text_input = ["test", "add", "text", "method"] | |
OpenSearchVectorSearch.add_texts( | |
docsearch, text_input, vector_field="my_vector", text_field="custom_text" | |
) | |
output = docsearch.similarity_search( | |
"add", k=1, vector_field="my_vector", text_field="custom_text" | |
) | |
assert output == [Document(page_content="foo")] | |
def test_opensearch_with_metadatas() -> None: | |
"""Test end to end indexing and search with metadata.""" | |
metadatas = [{"page": i} for i in range(len(texts))] | |
docsearch = OpenSearchVectorSearch.from_texts( | |
texts, | |
FakeEmbeddings(), | |
metadatas=metadatas, | |
opensearch_url=DEFAULT_OPENSEARCH_URL, | |
) | |
output = docsearch.similarity_search("foo", k=1) | |
assert output == [Document(page_content="foo", metadata={"page": 0})] | |
def test_add_text() -> None: | |
"""Test adding additional text elements to existing index.""" | |
text_input = ["test", "add", "text", "method"] | |
metadatas = [{"page": i} for i in range(len(text_input))] | |
docsearch = OpenSearchVectorSearch.from_texts( | |
texts, FakeEmbeddings(), opensearch_url=DEFAULT_OPENSEARCH_URL | |
) | |
docids = OpenSearchVectorSearch.add_texts(docsearch, text_input, metadatas) | |
assert len(docids) == len(text_input) | |
def test_opensearch_script_scoring() -> None: | |
"""Test end to end indexing and search using Script Scoring Search.""" | |
pre_filter_val = {"bool": {"filter": {"term": {"text": "bar"}}}} | |
docsearch = OpenSearchVectorSearch.from_texts( | |
texts, | |
FakeEmbeddings(), | |
opensearch_url=DEFAULT_OPENSEARCH_URL, | |
is_appx_search=False, | |
) | |
output = docsearch.similarity_search( | |
"foo", k=1, search_type=SCRIPT_SCORING_SEARCH, pre_filter=pre_filter_val | |
) | |
assert output == [Document(page_content="bar")] | |
def test_add_text_script_scoring() -> None: | |
"""Test adding additional text elements and validating using Script Scoring.""" | |
text_input = ["test", "add", "text", "method"] | |
metadatas = [{"page": i} for i in range(len(text_input))] | |
docsearch = OpenSearchVectorSearch.from_texts( | |
text_input, | |
FakeEmbeddings(), | |
opensearch_url=DEFAULT_OPENSEARCH_URL, | |
is_appx_search=False, | |
) | |
OpenSearchVectorSearch.add_texts(docsearch, texts, metadatas) | |
output = docsearch.similarity_search( | |
"add", k=1, search_type=SCRIPT_SCORING_SEARCH, space_type="innerproduct" | |
) | |
assert output == [Document(page_content="test")] | |
def test_opensearch_painless_scripting() -> None: | |
"""Test end to end indexing and search using Painless Scripting Search.""" | |
pre_filter_val = {"bool": {"filter": {"term": {"text": "baz"}}}} | |
docsearch = OpenSearchVectorSearch.from_texts( | |
texts, | |
FakeEmbeddings(), | |
opensearch_url=DEFAULT_OPENSEARCH_URL, | |
is_appx_search=False, | |
) | |
output = docsearch.similarity_search( | |
"foo", k=1, search_type=PAINLESS_SCRIPTING_SEARCH, pre_filter=pre_filter_val | |
) | |
assert output == [Document(page_content="baz")] | |
def test_add_text_painless_scripting() -> None: | |
"""Test adding additional text elements and validating using Painless Scripting.""" | |
text_input = ["test", "add", "text", "method"] | |
metadatas = [{"page": i} for i in range(len(text_input))] | |
docsearch = OpenSearchVectorSearch.from_texts( | |
text_input, | |
FakeEmbeddings(), | |
opensearch_url=DEFAULT_OPENSEARCH_URL, | |
is_appx_search=False, | |
) | |
OpenSearchVectorSearch.add_texts(docsearch, texts, metadatas) | |
output = docsearch.similarity_search( | |
"add", k=1, search_type=PAINLESS_SCRIPTING_SEARCH, space_type="cosineSimilarity" | |
) | |
assert output == [Document(page_content="test")] | |
def test_opensearch_invalid_search_type() -> None: | |
"""Test to validate similarity_search by providing invalid search_type.""" | |
docsearch = OpenSearchVectorSearch.from_texts( | |
texts, FakeEmbeddings(), opensearch_url=DEFAULT_OPENSEARCH_URL | |
) | |
with pytest.raises(ValueError): | |
docsearch.similarity_search("foo", k=1, search_type="invalid_search_type") | |
def test_opensearch_embedding_size_zero() -> None: | |
"""Test to validate indexing when embedding size is zero.""" | |
with pytest.raises(RuntimeError): | |
OpenSearchVectorSearch.from_texts( | |
[], FakeEmbeddings(), opensearch_url=DEFAULT_OPENSEARCH_URL | |
) | |
def test_appx_search_with_boolean_filter() -> None: | |
"""Test Approximate Search with Boolean Filter.""" | |
boolean_filter_val = {"bool": {"must": [{"term": {"text": "bar"}}]}} | |
docsearch = OpenSearchVectorSearch.from_texts( | |
texts, | |
FakeEmbeddings(), | |
opensearch_url=DEFAULT_OPENSEARCH_URL, | |
) | |
output = docsearch.similarity_search( | |
"foo", k=3, boolean_filter=boolean_filter_val, subquery_clause="should" | |
) | |
assert output == [Document(page_content="bar")] | |
def test_appx_search_with_lucene_filter() -> None: | |
"""Test Approximate Search with Lucene Filter.""" | |
lucene_filter_val = {"bool": {"must": [{"term": {"text": "bar"}}]}} | |
docsearch = OpenSearchVectorSearch.from_texts( | |
texts, FakeEmbeddings(), opensearch_url=DEFAULT_OPENSEARCH_URL, engine="lucene" | |
) | |
output = docsearch.similarity_search("foo", k=3, lucene_filter=lucene_filter_val) | |
assert output == [Document(page_content="bar")] | |
def test_opensearch_with_custom_field_name_appx_true() -> None: | |
"""Test Approximate Search with custom field name appx true.""" | |
text_input = ["add", "test", "text", "method"] | |
docsearch = OpenSearchVectorSearch.from_texts( | |
text_input, | |
FakeEmbeddings(), | |
opensearch_url=DEFAULT_OPENSEARCH_URL, | |
is_appx_search=True, | |
) | |
output = docsearch.similarity_search("add", k=1) | |
assert output == [Document(page_content="add")] | |
def test_opensearch_with_custom_field_name_appx_false() -> None: | |
"""Test Approximate Search with custom field name appx true.""" | |
text_input = ["add", "test", "text", "method"] | |
docsearch = OpenSearchVectorSearch.from_texts( | |
text_input, FakeEmbeddings(), opensearch_url=DEFAULT_OPENSEARCH_URL | |
) | |
output = docsearch.similarity_search("add", k=1) | |
assert output == [Document(page_content="add")] | |