Spaces:
Running
Running
"""Test FAISS functionality.""" | |
import math | |
import tempfile | |
import pytest | |
from langchain.docstore.document import Document | |
from langchain.docstore.in_memory import InMemoryDocstore | |
from langchain.docstore.wikipedia import Wikipedia | |
from langchain.vectorstores.faiss import FAISS | |
from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings | |
def test_faiss() -> None: | |
"""Test end to end construction and search.""" | |
texts = ["foo", "bar", "baz"] | |
docsearch = FAISS.from_texts(texts, FakeEmbeddings()) | |
index_to_id = docsearch.index_to_docstore_id | |
expected_docstore = InMemoryDocstore( | |
{ | |
index_to_id[0]: Document(page_content="foo"), | |
index_to_id[1]: Document(page_content="bar"), | |
index_to_id[2]: Document(page_content="baz"), | |
} | |
) | |
assert docsearch.docstore.__dict__ == expected_docstore.__dict__ | |
output = docsearch.similarity_search("foo", k=1) | |
assert output == [Document(page_content="foo")] | |
def test_faiss_vector_sim() -> None: | |
"""Test vector similarity.""" | |
texts = ["foo", "bar", "baz"] | |
docsearch = FAISS.from_texts(texts, FakeEmbeddings()) | |
index_to_id = docsearch.index_to_docstore_id | |
expected_docstore = InMemoryDocstore( | |
{ | |
index_to_id[0]: Document(page_content="foo"), | |
index_to_id[1]: Document(page_content="bar"), | |
index_to_id[2]: Document(page_content="baz"), | |
} | |
) | |
assert docsearch.docstore.__dict__ == expected_docstore.__dict__ | |
query_vec = FakeEmbeddings().embed_query(text="foo") | |
output = docsearch.similarity_search_by_vector(query_vec, k=1) | |
assert output == [Document(page_content="foo")] | |
# make sure we can have k > docstore size | |
output = docsearch.max_marginal_relevance_search_by_vector(query_vec, k=10) | |
assert len(output) == len(texts) | |
def test_faiss_with_metadatas() -> None: | |
"""Test end to end construction and search.""" | |
texts = ["foo", "bar", "baz"] | |
metadatas = [{"page": i} for i in range(len(texts))] | |
docsearch = FAISS.from_texts(texts, FakeEmbeddings(), metadatas=metadatas) | |
expected_docstore = InMemoryDocstore( | |
{ | |
docsearch.index_to_docstore_id[0]: Document( | |
page_content="foo", metadata={"page": 0} | |
), | |
docsearch.index_to_docstore_id[1]: Document( | |
page_content="bar", metadata={"page": 1} | |
), | |
docsearch.index_to_docstore_id[2]: Document( | |
page_content="baz", metadata={"page": 2} | |
), | |
} | |
) | |
assert docsearch.docstore.__dict__ == expected_docstore.__dict__ | |
output = docsearch.similarity_search("foo", k=1) | |
assert output == [Document(page_content="foo", metadata={"page": 0})] | |
def test_faiss_search_not_found() -> None: | |
"""Test what happens when document is not found.""" | |
texts = ["foo", "bar", "baz"] | |
docsearch = FAISS.from_texts(texts, FakeEmbeddings()) | |
# Get rid of the docstore to purposefully induce errors. | |
docsearch.docstore = InMemoryDocstore({}) | |
with pytest.raises(ValueError): | |
docsearch.similarity_search("foo") | |
def test_faiss_add_texts() -> None: | |
"""Test end to end adding of texts.""" | |
# Create initial doc store. | |
texts = ["foo", "bar", "baz"] | |
docsearch = FAISS.from_texts(texts, FakeEmbeddings()) | |
# Test adding a similar document as before. | |
docsearch.add_texts(["foo"]) | |
output = docsearch.similarity_search("foo", k=2) | |
assert output == [Document(page_content="foo"), Document(page_content="foo")] | |
def test_faiss_add_texts_not_supported() -> None: | |
"""Test adding of texts to a docstore that doesn't support it.""" | |
docsearch = FAISS(FakeEmbeddings().embed_query, None, Wikipedia(), {}) | |
with pytest.raises(ValueError): | |
docsearch.add_texts(["foo"]) | |
def test_faiss_local_save_load() -> None: | |
"""Test end to end serialization.""" | |
texts = ["foo", "bar", "baz"] | |
docsearch = FAISS.from_texts(texts, FakeEmbeddings()) | |
with tempfile.NamedTemporaryFile() as temp_file: | |
docsearch.save_local(temp_file.name) | |
new_docsearch = FAISS.load_local(temp_file.name, FakeEmbeddings()) | |
assert new_docsearch.index is not None | |
def test_faiss_similarity_search_with_relevance_scores() -> None: | |
"""Test the similarity search with normalized similarities.""" | |
texts = ["foo", "bar", "baz"] | |
docsearch = FAISS.from_texts( | |
texts, | |
FakeEmbeddings(), | |
normalize_score_fn=lambda score: 1.0 - score / math.sqrt(2), | |
) | |
outputs = docsearch.similarity_search_with_relevance_scores("foo", k=1) | |
output, score = outputs[0] | |
assert output == Document(page_content="foo") | |
assert score == 1.0 | |
def test_faiss_invalid_normalize_fn() -> None: | |
"""Test the similarity search with normalized similarities.""" | |
texts = ["foo", "bar", "baz"] | |
docsearch = FAISS.from_texts( | |
texts, FakeEmbeddings(), normalize_score_fn=lambda _: 2.0 | |
) | |
with pytest.raises( | |
ValueError, match="Normalized similarity scores must be between 0 and 1" | |
): | |
docsearch.similarity_search_with_relevance_scores("foo", k=1) | |
def test_missing_normalize_score_fn() -> None: | |
"""Test doesn't perform similarity search without a normalize score function.""" | |
with pytest.raises(ValueError): | |
texts = ["foo", "bar", "baz"] | |
faiss_instance = FAISS.from_texts(texts, FakeEmbeddings()) | |
faiss_instance.similarity_search_with_relevance_scores("foo", k=2) | |