Spaces:
Running
Running
"""Test OpenAI API wrapper.""" | |
from pathlib import Path | |
from typing import Generator | |
import pytest | |
from langchain.callbacks.manager import CallbackManager | |
from langchain.llms.loading import load_llm | |
from langchain.llms.openai import OpenAI, OpenAIChat | |
from langchain.schema import LLMResult | |
from tests.unit_tests.callbacks.fake_callback_handler import FakeCallbackHandler | |
def test_openai_call() -> None: | |
"""Test valid call to openai.""" | |
llm = OpenAI(max_tokens=10) | |
output = llm("Say foo:") | |
assert isinstance(output, str) | |
def test_openai_extra_kwargs() -> None: | |
"""Test extra kwargs to openai.""" | |
# Check that foo is saved in extra_kwargs. | |
llm = OpenAI(foo=3, max_tokens=10) | |
assert llm.max_tokens == 10 | |
assert llm.model_kwargs == {"foo": 3} | |
# Test that if extra_kwargs are provided, they are added to it. | |
llm = OpenAI(foo=3, model_kwargs={"bar": 2}) | |
assert llm.model_kwargs == {"foo": 3, "bar": 2} | |
# Test that if provided twice it errors | |
with pytest.raises(ValueError): | |
OpenAI(foo=3, model_kwargs={"foo": 2}) | |
# Test that if explicit param is specified in kwargs it errors | |
with pytest.raises(ValueError): | |
OpenAI(model_kwargs={"temperature": 0.2}) | |
# Test that "model" cannot be specified in kwargs | |
with pytest.raises(ValueError): | |
OpenAI(model_kwargs={"model": "text-davinci-003"}) | |
def test_openai_llm_output_contains_model_name() -> None: | |
"""Test llm_output contains model_name.""" | |
llm = OpenAI(max_tokens=10) | |
llm_result = llm.generate(["Hello, how are you?"]) | |
assert llm_result.llm_output is not None | |
assert llm_result.llm_output["model_name"] == llm.model_name | |
def test_openai_stop_valid() -> None: | |
"""Test openai stop logic on valid configuration.""" | |
query = "write an ordered list of five items" | |
first_llm = OpenAI(stop="3", temperature=0) | |
first_output = first_llm(query) | |
second_llm = OpenAI(temperature=0) | |
second_output = second_llm(query, stop=["3"]) | |
# Because it stops on new lines, shouldn't return anything | |
assert first_output == second_output | |
def test_openai_stop_error() -> None: | |
"""Test openai stop logic on bad configuration.""" | |
llm = OpenAI(stop="3", temperature=0) | |
with pytest.raises(ValueError): | |
llm("write an ordered list of five items", stop=["\n"]) | |
def test_saving_loading_llm(tmp_path: Path) -> None: | |
"""Test saving/loading an OpenAI LLM.""" | |
llm = OpenAI(max_tokens=10) | |
llm.save(file_path=tmp_path / "openai.yaml") | |
loaded_llm = load_llm(tmp_path / "openai.yaml") | |
assert loaded_llm == llm | |
def test_openai_streaming() -> None: | |
"""Test streaming tokens from OpenAI.""" | |
llm = OpenAI(max_tokens=10) | |
generator = llm.stream("I'm Pickle Rick") | |
assert isinstance(generator, Generator) | |
for token in generator: | |
assert isinstance(token["choices"][0]["text"], str) | |
def test_openai_streaming_error() -> None: | |
"""Test error handling in stream.""" | |
llm = OpenAI(best_of=2) | |
with pytest.raises(ValueError): | |
llm.stream("I'm Pickle Rick") | |
def test_openai_streaming_best_of_error() -> None: | |
"""Test validation for streaming fails if best_of is not 1.""" | |
with pytest.raises(ValueError): | |
OpenAI(best_of=2, streaming=True) | |
def test_openai_streaming_n_error() -> None: | |
"""Test validation for streaming fails if n is not 1.""" | |
with pytest.raises(ValueError): | |
OpenAI(n=2, streaming=True) | |
def test_openai_streaming_multiple_prompts_error() -> None: | |
"""Test validation for streaming fails if multiple prompts are given.""" | |
with pytest.raises(ValueError): | |
OpenAI(streaming=True).generate(["I'm Pickle Rick", "I'm Pickle Rick"]) | |
def test_openai_streaming_call() -> None: | |
"""Test valid call to openai.""" | |
llm = OpenAI(max_tokens=10, streaming=True) | |
output = llm("Say foo:") | |
assert isinstance(output, str) | |
def test_openai_streaming_callback() -> None: | |
"""Test that streaming correctly invokes on_llm_new_token callback.""" | |
callback_handler = FakeCallbackHandler() | |
callback_manager = CallbackManager([callback_handler]) | |
llm = OpenAI( | |
max_tokens=10, | |
streaming=True, | |
temperature=0, | |
callback_manager=callback_manager, | |
verbose=True, | |
) | |
llm("Write me a sentence with 100 words.") | |
assert callback_handler.llm_streams == 10 | |
async def test_openai_async_generate() -> None: | |
"""Test async generation.""" | |
llm = OpenAI(max_tokens=10) | |
output = await llm.agenerate(["Hello, how are you?"]) | |
assert isinstance(output, LLMResult) | |
async def test_openai_async_streaming_callback() -> None: | |
"""Test that streaming correctly invokes on_llm_new_token callback.""" | |
callback_handler = FakeCallbackHandler() | |
callback_manager = CallbackManager([callback_handler]) | |
llm = OpenAI( | |
max_tokens=10, | |
streaming=True, | |
temperature=0, | |
callback_manager=callback_manager, | |
verbose=True, | |
) | |
result = await llm.agenerate(["Write me a sentence with 100 words."]) | |
assert callback_handler.llm_streams == 10 | |
assert isinstance(result, LLMResult) | |
def test_openai_chat_wrong_class() -> None: | |
"""Test OpenAIChat with wrong class still works.""" | |
llm = OpenAI(model_name="gpt-3.5-turbo") | |
output = llm("Say foo:") | |
assert isinstance(output, str) | |
def test_openai_chat() -> None: | |
"""Test OpenAIChat.""" | |
llm = OpenAIChat(max_tokens=10) | |
output = llm("Say foo:") | |
assert isinstance(output, str) | |
def test_openai_chat_streaming() -> None: | |
"""Test OpenAIChat with streaming option.""" | |
llm = OpenAIChat(max_tokens=10, streaming=True) | |
output = llm("Say foo:") | |
assert isinstance(output, str) | |
def test_openai_chat_streaming_callback() -> None: | |
"""Test that streaming correctly invokes on_llm_new_token callback.""" | |
callback_handler = FakeCallbackHandler() | |
callback_manager = CallbackManager([callback_handler]) | |
llm = OpenAIChat( | |
max_tokens=10, | |
streaming=True, | |
temperature=0, | |
callback_manager=callback_manager, | |
verbose=True, | |
) | |
llm("Write me a sentence with 100 words.") | |
assert callback_handler.llm_streams != 0 | |
async def test_openai_chat_async_generate() -> None: | |
"""Test async chat.""" | |
llm = OpenAIChat(max_tokens=10) | |
output = await llm.agenerate(["Hello, how are you?"]) | |
assert isinstance(output, LLMResult) | |
async def test_openai_chat_async_streaming_callback() -> None: | |
"""Test that streaming correctly invokes on_llm_new_token callback.""" | |
callback_handler = FakeCallbackHandler() | |
callback_manager = CallbackManager([callback_handler]) | |
llm = OpenAIChat( | |
max_tokens=10, | |
streaming=True, | |
temperature=0, | |
callback_manager=callback_manager, | |
verbose=True, | |
) | |
result = await llm.agenerate(["Write me a sentence with 100 words."]) | |
assert callback_handler.llm_streams != 0 | |
assert isinstance(result, LLMResult) | |
def test_openai_modelname_to_contextsize_valid() -> None: | |
"""Test model name to context size on a valid model.""" | |
assert OpenAI().modelname_to_contextsize("davinci") == 2049 | |
def test_openai_modelname_to_contextsize_invalid() -> None: | |
"""Test model name to context size on an invalid model.""" | |
with pytest.raises(ValueError): | |
OpenAI().modelname_to_contextsize("foobar") | |