Spaces:
Running
Running
"""Test HuggingFace Pipeline wrapper.""" | |
from pathlib import Path | |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline | |
from langchain.llms.huggingface_pipeline import HuggingFacePipeline | |
from langchain.llms.loading import load_llm | |
from tests.integration_tests.llms.utils import assert_llm_equality | |
def test_huggingface_pipeline_text_generation() -> None: | |
"""Test valid call to HuggingFace text generation model.""" | |
llm = HuggingFacePipeline.from_model_id( | |
model_id="gpt2", task="text-generation", model_kwargs={"max_new_tokens": 10} | |
) | |
output = llm("Say foo:") | |
assert isinstance(output, str) | |
def test_huggingface_pipeline_text2text_generation() -> None: | |
"""Test valid call to HuggingFace text2text generation model.""" | |
llm = HuggingFacePipeline.from_model_id( | |
model_id="google/flan-t5-small", task="text2text-generation" | |
) | |
output = llm("Say foo:") | |
assert isinstance(output, str) | |
def test_saving_loading_llm(tmp_path: Path) -> None: | |
"""Test saving/loading an HuggingFaceHub LLM.""" | |
llm = HuggingFacePipeline.from_model_id( | |
model_id="gpt2", task="text-generation", model_kwargs={"max_new_tokens": 10} | |
) | |
llm.save(file_path=tmp_path / "hf.yaml") | |
loaded_llm = load_llm(tmp_path / "hf.yaml") | |
assert_llm_equality(llm, loaded_llm) | |
def test_init_with_pipeline() -> None: | |
"""Test initialization with a HF pipeline.""" | |
model_id = "gpt2" | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = AutoModelForCausalLM.from_pretrained(model_id) | |
pipe = pipeline( | |
"text-generation", model=model, tokenizer=tokenizer, max_new_tokens=10 | |
) | |
llm = HuggingFacePipeline(pipeline=pipe) | |
output = llm("Say foo:") | |
assert isinstance(output, str) | |