Spaces:
Running
Running
"""Test self-hosted embeddings.""" | |
from typing import Any | |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline | |
from langchain.embeddings import ( | |
SelfHostedEmbeddings, | |
SelfHostedHuggingFaceEmbeddings, | |
SelfHostedHuggingFaceInstructEmbeddings, | |
) | |
def get_remote_instance() -> Any: | |
"""Get remote instance for testing.""" | |
import runhouse as rh | |
gpu = rh.cluster(name="rh-a10x", instance_type="A100:1", use_spot=False) | |
gpu.install_packages(["pip:./"]) | |
return gpu | |
def test_self_hosted_huggingface_embedding_documents() -> None: | |
"""Test self-hosted huggingface embeddings.""" | |
documents = ["foo bar"] | |
gpu = get_remote_instance() | |
embedding = SelfHostedHuggingFaceEmbeddings(hardware=gpu) | |
output = embedding.embed_documents(documents) | |
assert len(output) == 1 | |
assert len(output[0]) == 768 | |
def test_self_hosted_huggingface_embedding_query() -> None: | |
"""Test self-hosted huggingface embeddings.""" | |
document = "foo bar" | |
gpu = get_remote_instance() | |
embedding = SelfHostedHuggingFaceEmbeddings(hardware=gpu) | |
output = embedding.embed_query(document) | |
assert len(output) == 768 | |
def test_self_hosted_huggingface_instructor_embedding_documents() -> None: | |
"""Test self-hosted huggingface instruct embeddings.""" | |
documents = ["foo bar"] | |
gpu = get_remote_instance() | |
embedding = SelfHostedHuggingFaceInstructEmbeddings(hardware=gpu) | |
output = embedding.embed_documents(documents) | |
assert len(output) == 1 | |
assert len(output[0]) == 768 | |
def test_self_hosted_huggingface_instructor_embedding_query() -> None: | |
"""Test self-hosted huggingface instruct embeddings.""" | |
query = "foo bar" | |
gpu = get_remote_instance() | |
embedding = SelfHostedHuggingFaceInstructEmbeddings(hardware=gpu) | |
output = embedding.embed_query(query) | |
assert len(output) == 768 | |
def get_pipeline() -> Any: | |
"""Get pipeline for testing.""" | |
model_id = "facebook/bart-base" | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = AutoModelForCausalLM.from_pretrained(model_id) | |
return pipeline("feature-extraction", model=model, tokenizer=tokenizer) | |
def inference_fn(pipeline: Any, prompt: str) -> Any: | |
"""Inference function for testing.""" | |
# Return last hidden state of the model | |
if isinstance(prompt, list): | |
return [emb[0][-1] for emb in pipeline(prompt)] | |
return pipeline(prompt)[0][-1] | |
def test_self_hosted_embedding_documents() -> None: | |
"""Test self-hosted huggingface instruct embeddings.""" | |
documents = ["foo bar"] * 2 | |
gpu = get_remote_instance() | |
embedding = SelfHostedEmbeddings( | |
model_load_fn=get_pipeline, hardware=gpu, inference_fn=inference_fn | |
) | |
output = embedding.embed_documents(documents) | |
assert len(output) == 2 | |
assert len(output[0]) == 50265 | |
def test_self_hosted_embedding_query() -> None: | |
"""Test self-hosted custom embeddings.""" | |
query = "foo bar" | |
gpu = get_remote_instance() | |
embedding = SelfHostedEmbeddings( | |
model_load_fn=get_pipeline, hardware=gpu, inference_fn=inference_fn | |
) | |
output = embedding.embed_query(query) | |
assert len(output) == 50265 | |