Spaces:
Running
Running
# flake8: noqa | |
"""Test llamacpp embeddings.""" | |
import os | |
from urllib.request import urlretrieve | |
from langchain.embeddings.llamacpp import LlamaCppEmbeddings | |
def get_model() -> str: | |
"""Download model. | |
From https://huggingface.co/Sosaka/Alpaca-native-4bit-ggml/, | |
convert to new ggml format and return model path. | |
""" | |
model_url = "https://huggingface.co/Sosaka/Alpaca-native-4bit-ggml/resolve/main/ggml-alpaca-7b-q4.bin" | |
tokenizer_url = "https://huggingface.co/decapoda-research/llama-7b-hf/resolve/main/tokenizer.model" | |
conversion_script = "https://github.com/ggerganov/llama.cpp/raw/master/convert-unversioned-ggml-to-ggml.py" | |
local_filename = model_url.split("/")[-1] | |
if not os.path.exists("convert-unversioned-ggml-to-ggml.py"): | |
urlretrieve(conversion_script, "convert-unversioned-ggml-to-ggml.py") | |
if not os.path.exists("tokenizer.model"): | |
urlretrieve(tokenizer_url, "tokenizer.model") | |
if not os.path.exists(local_filename): | |
urlretrieve(model_url, local_filename) | |
os.system("python convert-unversioned-ggml-to-ggml.py . tokenizer.model") | |
return local_filename | |
def test_llamacpp_embedding_documents() -> None: | |
"""Test llamacpp embeddings.""" | |
documents = ["foo bar"] | |
model_path = get_model() | |
embedding = LlamaCppEmbeddings(model_path=model_path) | |
output = embedding.embed_documents(documents) | |
assert len(output) == 1 | |
assert len(output[0]) == 512 | |
def test_llamacpp_embedding_query() -> None: | |
"""Test llamacpp embeddings.""" | |
document = "foo bar" | |
model_path = get_model() | |
embedding = LlamaCppEmbeddings(model_path=model_path) | |
output = embedding.embed_query(document) | |
assert len(output) == 512 | |