Spaces:
Running
Running
"""Integration tests for the langchain tracer module.""" | |
import asyncio | |
import pytest | |
from langchain.agents import AgentType, initialize_agent, load_tools | |
from langchain.callbacks import get_openai_callback | |
from langchain.llms import OpenAI | |
async def test_openai_callback() -> None: | |
llm = OpenAI(temperature=0) | |
with get_openai_callback() as cb: | |
llm("What is the square root of 4?") | |
total_tokens = cb.total_tokens | |
assert total_tokens > 0 | |
with get_openai_callback() as cb: | |
llm("What is the square root of 4?") | |
llm("What is the square root of 4?") | |
assert cb.total_tokens == total_tokens * 2 | |
with get_openai_callback() as cb: | |
await asyncio.gather( | |
*[llm.agenerate(["What is the square root of 4?"]) for _ in range(3)] | |
) | |
assert cb.total_tokens == total_tokens * 3 | |
task = asyncio.create_task(llm.agenerate(["What is the square root of 4?"])) | |
with get_openai_callback() as cb: | |
await llm.agenerate(["What is the square root of 4?"]) | |
await task | |
assert cb.total_tokens == total_tokens | |
def test_openai_callback_agent() -> None: | |
llm = OpenAI(temperature=0) | |
tools = load_tools(["serpapi", "llm-math"], llm=llm) | |
agent = initialize_agent( | |
tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True | |
) | |
with get_openai_callback() as cb: | |
agent.run( | |
"Who is Olivia Wilde's boyfriend? " | |
"What is his current age raised to the 0.23 power?" | |
) | |
print(f"Total Tokens: {cb.total_tokens}") | |
print(f"Prompt Tokens: {cb.prompt_tokens}") | |
print(f"Completion Tokens: {cb.completion_tokens}") | |
print(f"Total Cost (USD): ${cb.total_cost}") | |