Spaces:
Sleeping
Sleeping
File size: 12,222 Bytes
6997035 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
# Copyright 2023 Databricks, Inc.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from functools import partial
from pathlib import Path
from typing import Any, Dict, List, Tuple, Union
import click
import numpy as np
from datasets import Dataset, load_dataset
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
DataCollatorForLanguageModeling,
PreTrainedTokenizer,
Trainer,
TrainingArguments,
set_seed,
)
from .consts import (
DEFAULT_INPUT_MODEL,
DEFAULT_SEED,
PROMPT_WITH_INPUT_FORMAT,
PROMPT_NO_INPUT_FORMAT,
END_KEY,
INSTRUCTION_KEY,
RESPONSE_KEY_NL,
)
logger = logging.getLogger(__name__)
ROOT_PATH = Path(__file__).parent.parent
DATABRICKS_DOLLY_15K_PATH = ROOT_PATH / "data" / "databricks-dolly-15k.jsonl"
class DataCollatorForCompletionOnlyLM(DataCollatorForLanguageModeling):
def torch_call(self, examples: List[Union[List[int], Any, Dict[str, Any]]]) -> Dict[str, Any]:
batch = super().torch_call(examples)
# The prompt ends with the response key plus a newline. We encode this and then try to find it in the
# sequence of tokens. This should just be a single token.
response_token_ids = self.tokenizer.encode(RESPONSE_KEY_NL)
labels = batch["labels"].clone()
for i in range(len(examples)):
response_token_ids_start_idx = None
for idx in np.where(batch["labels"][i] == response_token_ids[0])[0]:
response_token_ids_start_idx = idx
break
if response_token_ids_start_idx is None:
raise RuntimeError(
f'Could not find response key {response_token_ids} in token IDs {batch["labels"][i]}'
)
response_token_ids_end_idx = response_token_ids_start_idx + 1
# Make pytorch loss function ignore all tokens up through the end of the response key
labels[i, :response_token_ids_end_idx] = -100
batch["labels"] = labels
return batch
def preprocess_batch(batch: Dict[str, List], tokenizer: AutoTokenizer, max_length: int) -> dict:
return tokenizer(
batch["text"],
max_length=max_length,
truncation=True,
)
def load_training_dataset() -> Dataset:
logger.info(f"Loading dataset from {DATABRICKS_DOLLY_15K_PATH}")
dataset = load_dataset("json", data_files=str(DATABRICKS_DOLLY_15K_PATH))["train"]
logger.info("Found %d rows", dataset.num_rows)
def _add_text(rec):
instruction = rec["instruction"]
response = rec["response"]
context = rec.get("context")
if not instruction:
raise ValueError(f"Expected an instruction in: {rec}")
if not response:
raise ValueError(f"Expected a response in: {rec}")
# For some instructions there is an input that goes along with the instruction, providing context for the
# instruction. For example, the input might be a passage from Wikipedia and the instruction says to extract
# some piece of information from it. The response is that information to extract. In other cases there is
# no input. For example, the instruction might be open QA such as asking what year some historic figure was
# born.
if context:
rec["text"] = PROMPT_WITH_INPUT_FORMAT.format(instruction=instruction, response=response, input=context)
else:
rec["text"] = PROMPT_NO_INPUT_FORMAT.format(instruction=instruction, response=response)
return rec
dataset = dataset.map(_add_text)
return dataset
def load_tokenizer(pretrained_model_name_or_path: str = DEFAULT_INPUT_MODEL) -> PreTrainedTokenizer:
logger.info(f"Loading tokenizer for {pretrained_model_name_or_path}")
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.add_special_tokens({"additional_special_tokens": [END_KEY, INSTRUCTION_KEY, RESPONSE_KEY_NL]})
return tokenizer
def load_model(
pretrained_model_name_or_path: str = DEFAULT_INPUT_MODEL, *, gradient_checkpointing: bool = False
) -> AutoModelForCausalLM:
logger.info(f"Loading model for {pretrained_model_name_or_path}")
model = AutoModelForCausalLM.from_pretrained(
pretrained_model_name_or_path, trust_remote_code=True, use_cache=False if gradient_checkpointing else True
)
return model
def get_model_tokenizer(
pretrained_model_name_or_path: str = DEFAULT_INPUT_MODEL, *, gradient_checkpointing: bool = False
) -> Tuple[AutoModelForCausalLM, PreTrainedTokenizer]:
tokenizer = load_tokenizer(pretrained_model_name_or_path)
model = load_model(pretrained_model_name_or_path, gradient_checkpointing=gradient_checkpointing)
model.resize_token_embeddings(len(tokenizer))
return model, tokenizer
def preprocess_dataset(tokenizer: AutoTokenizer, max_length: int, seed=DEFAULT_SEED) -> Dataset:
"""Loads the training dataset and tokenizes it so it is ready for training.
Args:
tokenizer (AutoTokenizer): Tokenizer tied to the model.
max_length (int): Maximum number of tokens to emit from tokenizer.
Returns:
Dataset: HuggingFace dataset
"""
dataset = load_training_dataset()
logger.info("Preprocessing dataset")
_preprocessing_function = partial(preprocess_batch, max_length=max_length, tokenizer=tokenizer)
dataset = dataset.map(
_preprocessing_function,
batched=True,
remove_columns=["instruction", "context", "response", "text", "category"],
)
# Make sure we don't have any truncated records, as this would mean the end keyword is missing.
logger.info("Processed dataset has %d rows", dataset.num_rows)
dataset = dataset.filter(lambda rec: len(rec["input_ids"]) < max_length)
logger.info("Processed dataset has %d rows after filtering for truncated records", dataset.num_rows)
logger.info("Shuffling dataset")
dataset = dataset.shuffle(seed=seed)
logger.info("Done preprocessing")
return dataset
def train(
*,
input_model: str,
local_output_dir: str,
dbfs_output_dir: str,
epochs: int,
per_device_train_batch_size: int,
per_device_eval_batch_size: int,
lr: float,
seed: int,
deepspeed: str,
gradient_checkpointing: bool,
local_rank: str,
bf16: bool,
logging_steps: int,
save_steps: int,
eval_steps: int,
test_size: Union[float, int],
save_total_limit: int,
warmup_steps: int,
):
set_seed(seed)
model, tokenizer = get_model_tokenizer(
pretrained_model_name_or_path=input_model, gradient_checkpointing=gradient_checkpointing
)
# Use the same max length that the model supports. Fall back to 1024 if the setting can't be found.
# The configuraton for the length can be stored under different names depending on the model. Here we attempt
# a few possible names we've encountered.
conf = model.config
max_length = None
for length_setting in ["n_positions", "max_position_embeddings", "seq_length"]:
max_length = getattr(model.config, length_setting, None)
if max_length:
logger.info(f"Found max lenth: {max_length}")
break
if not max_length:
max_length = 1024
logger.info(f"Using default max length: {max_length}")
processed_dataset = preprocess_dataset(tokenizer=tokenizer, max_length=max_length, seed=seed)
split_dataset = processed_dataset.train_test_split(test_size=test_size, seed=seed)
logger.info("Train data size: %d", split_dataset["train"].num_rows)
logger.info("Test data size: %d", split_dataset["test"].num_rows)
data_collator = DataCollatorForCompletionOnlyLM(
tokenizer=tokenizer, mlm=False, return_tensors="pt", pad_to_multiple_of=8
)
if not dbfs_output_dir:
logger.warn("Will NOT save to DBFS")
training_args = TrainingArguments(
output_dir=local_output_dir,
per_device_train_batch_size=per_device_train_batch_size,
per_device_eval_batch_size=per_device_eval_batch_size,
fp16=False,
bf16=bf16,
learning_rate=lr,
num_train_epochs=epochs,
deepspeed=deepspeed,
gradient_checkpointing=gradient_checkpointing,
logging_dir=f"{local_output_dir}/runs",
logging_strategy="steps",
logging_steps=logging_steps,
evaluation_strategy="steps",
eval_steps=eval_steps,
save_strategy="steps",
save_steps=save_steps,
save_total_limit=save_total_limit,
load_best_model_at_end=False,
report_to="tensorboard",
disable_tqdm=True,
remove_unused_columns=False,
local_rank=local_rank,
warmup_steps=warmup_steps,
)
logger.info("Instantiating Trainer")
trainer = Trainer(
model=model,
tokenizer=tokenizer,
args=training_args,
train_dataset=split_dataset["train"],
eval_dataset=split_dataset["test"],
data_collator=data_collator,
)
logger.info("Training")
trainer.train()
logger.info(f"Saving Model to {local_output_dir}")
trainer.save_model(output_dir=local_output_dir)
if dbfs_output_dir:
logger.info(f"Saving Model to {dbfs_output_dir}")
trainer.save_model(output_dir=dbfs_output_dir)
logger.info("Done.")
@click.command()
@click.option("--input-model", type=str, help="Input model to fine tune", default=DEFAULT_INPUT_MODEL)
@click.option("--local-output-dir", type=str, help="Write directly to this local path", required=True)
@click.option("--dbfs-output-dir", type=str, help="Sync data to this path on DBFS")
@click.option("--epochs", type=int, default=3, help="Number of epochs to train for.")
@click.option("--per-device-train-batch-size", type=int, default=8, help="Batch size to use for training.")
@click.option("--per-device-eval-batch-size", type=int, default=8, help="Batch size to use for evaluation.")
@click.option(
"--test-size", type=int, default=1000, help="Number of test records for evaluation, or ratio of test records."
)
@click.option("--warmup-steps", type=int, default=None, help="Number of steps to warm up to learning rate")
@click.option("--logging-steps", type=int, default=10, help="How often to log")
@click.option("--eval-steps", type=int, default=50, help="How often to run evaluation on test records")
@click.option("--save-steps", type=int, default=400, help="How often to checkpoint the model")
@click.option("--save-total-limit", type=int, default=10, help="Maximum number of checkpoints to keep on disk")
@click.option("--lr", type=float, default=1e-5, help="Learning rate to use for training.")
@click.option("--seed", type=int, default=DEFAULT_SEED, help="Seed to use for training.")
@click.option("--deepspeed", type=str, default=None, help="Path to deepspeed config file.")
@click.option(
"--gradient-checkpointing/--no-gradient-checkpointing",
is_flag=True,
default=True,
help="Use gradient checkpointing?",
)
@click.option(
"--local_rank",
type=str,
default=True,
help="Provided by deepspeed to identify which instance this process is when performing multi-GPU training.",
)
@click.option("--bf16", type=bool, default=True, help="Whether to use bf16 (preferred on A100's).")
def main(**kwargs):
train(**kwargs)
if __name__ == "__main__":
logging.basicConfig(
format="%(asctime)s %(levelname)s [%(name)s] %(message)s", level=logging.INFO, datefmt="%Y-%m-%d %H:%M:%S"
)
try:
main()
except Exception:
logger.exception("main failed")
raise
|