File size: 5,056 Bytes
cfd3735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
"""Tests for the time-weighted retriever class."""

from datetime import datetime
from typing import Any, Iterable, List, Optional, Tuple, Type

import pytest

from langchain.embeddings.base import Embeddings
from langchain.retrievers.time_weighted_retriever import (
    TimeWeightedVectorStoreRetriever,
    _get_hours_passed,
)
from langchain.schema import Document
from langchain.vectorstores.base import VectorStore


def _get_example_memories(k: int = 4) -> List[Document]:
    return [
        Document(
            page_content="foo",
            metadata={
                "buffer_idx": i,
                "last_accessed_at": datetime(2023, 4, 14, 12, 0),
            },
        )
        for i in range(k)
    ]


class MockVectorStore(VectorStore):
    """Mock invalid vector store."""

    def add_texts(
        self,
        texts: Iterable[str],
        metadatas: Optional[List[dict]] = None,
        **kwargs: Any,
    ) -> List[str]:
        """Run more texts through the embeddings and add to the vectorstore.

        Args:
            texts: Iterable of strings to add to the vectorstore.
            metadatas: Optional list of metadatas associated with the texts.
            kwargs: vectorstore specific parameters

        Returns:
            List of ids from adding the texts into the vectorstore.
        """
        return list(texts)

    async def aadd_texts(
        self,
        texts: Iterable[str],
        metadatas: Optional[List[dict]] = None,
        **kwargs: Any,
    ) -> List[str]:
        """Run more texts through the embeddings and add to the vectorstore."""
        raise NotImplementedError

    def similarity_search(
        self, query: str, k: int = 4, **kwargs: Any
    ) -> List[Document]:
        """Return docs most similar to query."""
        return []

    @classmethod
    def from_documents(
        cls: Type["MockVectorStore"],
        documents: List[Document],
        embedding: Embeddings,
        **kwargs: Any,
    ) -> "MockVectorStore":
        """Return VectorStore initialized from documents and embeddings."""
        texts = [d.page_content for d in documents]
        metadatas = [d.metadata for d in documents]
        return cls.from_texts(texts, embedding, metadatas=metadatas, **kwargs)

    @classmethod
    def from_texts(
        cls: Type["MockVectorStore"],
        texts: List[str],
        embedding: Embeddings,
        metadatas: Optional[List[dict]] = None,
        **kwargs: Any,
    ) -> "MockVectorStore":
        """Return VectorStore initialized from texts and embeddings."""
        return cls()

    def _similarity_search_with_relevance_scores(
        self,
        query: str,
        k: int = 4,
        **kwargs: Any,
    ) -> List[Tuple[Document, float]]:
        """Return docs and similarity scores, normalized on a scale from 0 to 1.

        0 is dissimilar, 1 is most similar.
        """
        return [(doc, 0.5) for doc in _get_example_memories()]


@pytest.fixture
def time_weighted_retriever() -> TimeWeightedVectorStoreRetriever:
    vectorstore = MockVectorStore()
    return TimeWeightedVectorStoreRetriever(
        vectorstore=vectorstore, memory_stream=_get_example_memories()
    )


def test__get_hours_passed() -> None:
    time1 = datetime(2023, 4, 14, 14, 30)
    time2 = datetime(2023, 4, 14, 12, 0)
    expected_hours_passed = 2.5
    hours_passed = _get_hours_passed(time1, time2)
    assert hours_passed == expected_hours_passed


def test_get_combined_score(
    time_weighted_retriever: TimeWeightedVectorStoreRetriever,
) -> None:
    document = Document(
        page_content="Test document",
        metadata={"last_accessed_at": datetime(2023, 4, 14, 12, 0)},
    )
    vector_salience = 0.7
    expected_hours_passed = 2.5
    current_time = datetime(2023, 4, 14, 14, 30)
    combined_score = time_weighted_retriever._get_combined_score(
        document, vector_salience, current_time
    )
    expected_score = (
        1.0 - time_weighted_retriever.decay_rate
    ) ** expected_hours_passed + vector_salience
    assert combined_score == pytest.approx(expected_score)


def test_get_salient_docs(
    time_weighted_retriever: TimeWeightedVectorStoreRetriever,
) -> None:
    query = "Test query"
    docs_and_scores = time_weighted_retriever.get_salient_docs(query)
    assert isinstance(docs_and_scores, dict)


def test_get_relevant_documents(
    time_weighted_retriever: TimeWeightedVectorStoreRetriever,
) -> None:
    query = "Test query"
    relevant_documents = time_weighted_retriever.get_relevant_documents(query)
    assert isinstance(relevant_documents, list)


def test_add_documents(
    time_weighted_retriever: TimeWeightedVectorStoreRetriever,
) -> None:
    documents = [Document(page_content="test_add_documents document")]
    added_documents = time_weighted_retriever.add_documents(documents)
    assert isinstance(added_documents, list)
    assert len(added_documents) == 1
    assert (
        time_weighted_retriever.memory_stream[-1].page_content
        == documents[0].page_content
    )