File size: 7,400 Bytes
cfd3735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
"""Unit tests for agents."""

from typing import Any, List, Mapping, Optional

from langchain.agents import AgentExecutor, AgentType, initialize_agent
from langchain.agents.tools import Tool
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import LLM
from tests.unit_tests.callbacks.fake_callback_handler import FakeCallbackHandler


class FakeListLLM(LLM):
    """Fake LLM for testing that outputs elements of a list."""

    responses: List[str]
    i: int = -1

    def _call(
        self,
        prompt: str,
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
    ) -> str:
        """Increment counter, and then return response in that index."""
        self.i += 1
        print(f"=== Mock Response #{self.i} ===")
        print(self.responses[self.i])
        return self.responses[self.i]

    @property
    def _identifying_params(self) -> Mapping[str, Any]:
        return {}

    @property
    def _llm_type(self) -> str:
        """Return type of llm."""
        return "fake_list"


def _get_agent(**kwargs: Any) -> AgentExecutor:
    """Get agent for testing."""
    bad_action_name = "BadAction"
    responses = [
        f"I'm turning evil\nAction: {bad_action_name}\nAction Input: misalignment",
        "Oh well\nFinal Answer: curses foiled again",
    ]
    fake_llm = FakeListLLM(responses=responses)
    tools = [
        Tool(
            name="Search",
            func=lambda x: x,
            description="Useful for searching",
        ),
        Tool(
            name="Lookup",
            func=lambda x: x,
            description="Useful for looking up things in a table",
        ),
    ]
    agent = initialize_agent(
        tools,
        fake_llm,
        agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
        verbose=True,
        **kwargs,
    )
    return agent


def test_agent_bad_action() -> None:
    """Test react chain when bad action given."""
    agent = _get_agent()
    output = agent.run("when was langchain made")
    assert output == "curses foiled again"


def test_agent_stopped_early() -> None:
    """Test react chain when max iterations or max execution time is exceeded."""
    # iteration limit
    agent = _get_agent(max_iterations=0)
    output = agent.run("when was langchain made")
    assert output == "Agent stopped due to iteration limit or time limit."

    # execution time limit
    agent = _get_agent(max_execution_time=0.0)
    output = agent.run("when was langchain made")
    assert output == "Agent stopped due to iteration limit or time limit."


def test_agent_with_callbacks() -> None:
    """Test react chain with callbacks by setting verbose globally."""
    handler1 = FakeCallbackHandler()
    handler2 = FakeCallbackHandler()

    tool = "Search"
    responses = [
        f"FooBarBaz\nAction: {tool}\nAction Input: misalignment",
        "Oh well\nFinal Answer: curses foiled again",
    ]
    # Only fake LLM gets callbacks for handler2
    fake_llm = FakeListLLM(responses=responses, callbacks=[handler2])
    tools = [
        Tool(
            name="Search",
            func=lambda x: x,
            description="Useful for searching",
        ),
    ]
    agent = initialize_agent(
        tools,
        fake_llm,
        agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
    )

    output = agent.run("when was langchain made", callbacks=[handler1])
    assert output == "curses foiled again"

    # 1 top level chain run runs, 2 LLMChain runs, 2 LLM runs, 1 tool run
    assert handler1.chain_starts == handler1.chain_ends == 3
    assert handler1.llm_starts == handler1.llm_ends == 2
    assert handler1.tool_starts == 1
    assert handler1.tool_ends == 1
    # 1 extra agent action
    assert handler1.starts == 7
    # 1 extra agent end
    assert handler1.ends == 7
    assert handler1.errors == 0
    # during LLMChain
    assert handler1.text == 2

    assert handler2.llm_starts == 2
    assert handler2.llm_ends == 2
    assert (
        handler2.chain_starts
        == handler2.tool_starts
        == handler2.tool_ends
        == handler2.chain_ends
        == 0
    )


def test_agent_tool_return_direct() -> None:
    """Test agent using tools that return directly."""
    tool = "Search"
    responses = [
        f"FooBarBaz\nAction: {tool}\nAction Input: misalignment",
        "Oh well\nFinal Answer: curses foiled again",
    ]
    fake_llm = FakeListLLM(responses=responses)
    tools = [
        Tool(
            name="Search",
            func=lambda x: x,
            description="Useful for searching",
            return_direct=True,
        ),
    ]
    agent = initialize_agent(
        tools,
        fake_llm,
        agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
    )

    output = agent.run("when was langchain made")
    assert output == "misalignment"


def test_agent_tool_return_direct_in_intermediate_steps() -> None:
    """Test agent using tools that return directly."""
    tool = "Search"
    responses = [
        f"FooBarBaz\nAction: {tool}\nAction Input: misalignment",
        "Oh well\nFinal Answer: curses foiled again",
    ]
    fake_llm = FakeListLLM(responses=responses)
    tools = [
        Tool(
            name="Search",
            func=lambda x: x,
            description="Useful for searching",
            return_direct=True,
        ),
    ]
    agent = initialize_agent(
        tools,
        fake_llm,
        agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
        return_intermediate_steps=True,
    )

    resp = agent("when was langchain made")
    assert resp["output"] == "misalignment"
    assert len(resp["intermediate_steps"]) == 1
    action, _action_intput = resp["intermediate_steps"][0]
    assert action.tool == "Search"


def test_agent_with_new_prefix_suffix() -> None:
    """Test agent initilization kwargs with new prefix and suffix."""
    fake_llm = FakeListLLM(
        responses=["FooBarBaz\nAction: Search\nAction Input: misalignment"]
    )
    tools = [
        Tool(
            name="Search",
            func=lambda x: x,
            description="Useful for searching",
            return_direct=True,
        ),
    ]
    prefix = "FooBarBaz"

    suffix = "Begin now!\nInput: {input}\nThought: {agent_scratchpad}"

    agent = initialize_agent(
        tools=tools,
        llm=fake_llm,
        agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
        agent_kwargs={"prefix": prefix, "suffix": suffix},
    )

    # avoids "BasePromptTemplate" has no attribute "template" error
    assert hasattr(agent.agent.llm_chain.prompt, "template")  # type: ignore
    prompt_str = agent.agent.llm_chain.prompt.template  # type: ignore
    assert prompt_str.startswith(prefix), "Prompt does not start with prefix"
    assert prompt_str.endswith(suffix), "Prompt does not end with suffix"


def test_agent_lookup_tool() -> None:
    """Test agent lookup tool."""
    fake_llm = FakeListLLM(
        responses=["FooBarBaz\nAction: Search\nAction Input: misalignment"]
    )
    tools = [
        Tool(
            name="Search",
            func=lambda x: x,
            description="Useful for searching",
            return_direct=True,
        ),
    ]
    agent = initialize_agent(
        tools=tools,
        llm=fake_llm,
        agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
    )

    assert agent.lookup_tool("Search") == tools[0]