Spaces:
Sleeping
Sleeping
File size: 7,400 Bytes
cfd3735 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
"""Unit tests for agents."""
from typing import Any, List, Mapping, Optional
from langchain.agents import AgentExecutor, AgentType, initialize_agent
from langchain.agents.tools import Tool
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import LLM
from tests.unit_tests.callbacks.fake_callback_handler import FakeCallbackHandler
class FakeListLLM(LLM):
"""Fake LLM for testing that outputs elements of a list."""
responses: List[str]
i: int = -1
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
) -> str:
"""Increment counter, and then return response in that index."""
self.i += 1
print(f"=== Mock Response #{self.i} ===")
print(self.responses[self.i])
return self.responses[self.i]
@property
def _identifying_params(self) -> Mapping[str, Any]:
return {}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "fake_list"
def _get_agent(**kwargs: Any) -> AgentExecutor:
"""Get agent for testing."""
bad_action_name = "BadAction"
responses = [
f"I'm turning evil\nAction: {bad_action_name}\nAction Input: misalignment",
"Oh well\nFinal Answer: curses foiled again",
]
fake_llm = FakeListLLM(responses=responses)
tools = [
Tool(
name="Search",
func=lambda x: x,
description="Useful for searching",
),
Tool(
name="Lookup",
func=lambda x: x,
description="Useful for looking up things in a table",
),
]
agent = initialize_agent(
tools,
fake_llm,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
verbose=True,
**kwargs,
)
return agent
def test_agent_bad_action() -> None:
"""Test react chain when bad action given."""
agent = _get_agent()
output = agent.run("when was langchain made")
assert output == "curses foiled again"
def test_agent_stopped_early() -> None:
"""Test react chain when max iterations or max execution time is exceeded."""
# iteration limit
agent = _get_agent(max_iterations=0)
output = agent.run("when was langchain made")
assert output == "Agent stopped due to iteration limit or time limit."
# execution time limit
agent = _get_agent(max_execution_time=0.0)
output = agent.run("when was langchain made")
assert output == "Agent stopped due to iteration limit or time limit."
def test_agent_with_callbacks() -> None:
"""Test react chain with callbacks by setting verbose globally."""
handler1 = FakeCallbackHandler()
handler2 = FakeCallbackHandler()
tool = "Search"
responses = [
f"FooBarBaz\nAction: {tool}\nAction Input: misalignment",
"Oh well\nFinal Answer: curses foiled again",
]
# Only fake LLM gets callbacks for handler2
fake_llm = FakeListLLM(responses=responses, callbacks=[handler2])
tools = [
Tool(
name="Search",
func=lambda x: x,
description="Useful for searching",
),
]
agent = initialize_agent(
tools,
fake_llm,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
)
output = agent.run("when was langchain made", callbacks=[handler1])
assert output == "curses foiled again"
# 1 top level chain run runs, 2 LLMChain runs, 2 LLM runs, 1 tool run
assert handler1.chain_starts == handler1.chain_ends == 3
assert handler1.llm_starts == handler1.llm_ends == 2
assert handler1.tool_starts == 1
assert handler1.tool_ends == 1
# 1 extra agent action
assert handler1.starts == 7
# 1 extra agent end
assert handler1.ends == 7
assert handler1.errors == 0
# during LLMChain
assert handler1.text == 2
assert handler2.llm_starts == 2
assert handler2.llm_ends == 2
assert (
handler2.chain_starts
== handler2.tool_starts
== handler2.tool_ends
== handler2.chain_ends
== 0
)
def test_agent_tool_return_direct() -> None:
"""Test agent using tools that return directly."""
tool = "Search"
responses = [
f"FooBarBaz\nAction: {tool}\nAction Input: misalignment",
"Oh well\nFinal Answer: curses foiled again",
]
fake_llm = FakeListLLM(responses=responses)
tools = [
Tool(
name="Search",
func=lambda x: x,
description="Useful for searching",
return_direct=True,
),
]
agent = initialize_agent(
tools,
fake_llm,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
)
output = agent.run("when was langchain made")
assert output == "misalignment"
def test_agent_tool_return_direct_in_intermediate_steps() -> None:
"""Test agent using tools that return directly."""
tool = "Search"
responses = [
f"FooBarBaz\nAction: {tool}\nAction Input: misalignment",
"Oh well\nFinal Answer: curses foiled again",
]
fake_llm = FakeListLLM(responses=responses)
tools = [
Tool(
name="Search",
func=lambda x: x,
description="Useful for searching",
return_direct=True,
),
]
agent = initialize_agent(
tools,
fake_llm,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
return_intermediate_steps=True,
)
resp = agent("when was langchain made")
assert resp["output"] == "misalignment"
assert len(resp["intermediate_steps"]) == 1
action, _action_intput = resp["intermediate_steps"][0]
assert action.tool == "Search"
def test_agent_with_new_prefix_suffix() -> None:
"""Test agent initilization kwargs with new prefix and suffix."""
fake_llm = FakeListLLM(
responses=["FooBarBaz\nAction: Search\nAction Input: misalignment"]
)
tools = [
Tool(
name="Search",
func=lambda x: x,
description="Useful for searching",
return_direct=True,
),
]
prefix = "FooBarBaz"
suffix = "Begin now!\nInput: {input}\nThought: {agent_scratchpad}"
agent = initialize_agent(
tools=tools,
llm=fake_llm,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
agent_kwargs={"prefix": prefix, "suffix": suffix},
)
# avoids "BasePromptTemplate" has no attribute "template" error
assert hasattr(agent.agent.llm_chain.prompt, "template") # type: ignore
prompt_str = agent.agent.llm_chain.prompt.template # type: ignore
assert prompt_str.startswith(prefix), "Prompt does not start with prefix"
assert prompt_str.endswith(suffix), "Prompt does not end with suffix"
def test_agent_lookup_tool() -> None:
"""Test agent lookup tool."""
fake_llm = FakeListLLM(
responses=["FooBarBaz\nAction: Search\nAction Input: misalignment"]
)
tools = [
Tool(
name="Search",
func=lambda x: x,
description="Useful for searching",
return_direct=True,
),
]
agent = initialize_agent(
tools=tools,
llm=fake_llm,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
)
assert agent.lookup_tool("Search") == tools[0]
|