File size: 7,084 Bytes
cfd3735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
"""Test Weaviate functionality."""
import logging
import os
from typing import Generator, Union

import pytest
from weaviate import Client

from langchain.docstore.document import Document
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores.weaviate import Weaviate
from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings

logging.basicConfig(level=logging.DEBUG)

"""
cd tests/integration_tests/vectorstores/docker-compose
docker compose -f weaviate.yml up
"""


class TestWeaviate:
    @classmethod
    def setup_class(cls) -> None:
        if not os.getenv("OPENAI_API_KEY"):
            raise ValueError("OPENAI_API_KEY environment variable is not set")

    @pytest.fixture(scope="class", autouse=True)
    def weaviate_url(self) -> Union[str, Generator[str, None, None]]:
        """Return the weaviate url."""
        url = "http://localhost:8080"
        yield url

        # Clear the test index
        client = Client(url)
        client.schema.delete_all()

    @pytest.mark.vcr(ignore_localhost=True)
    def test_similarity_search_without_metadata(
        self, weaviate_url: str, embedding_openai: OpenAIEmbeddings
    ) -> None:
        """Test end to end construction and search without metadata."""
        texts = ["foo", "bar", "baz"]
        docsearch = Weaviate.from_texts(
            texts,
            embedding_openai,
            weaviate_url=weaviate_url,
        )

        output = docsearch.similarity_search("foo", k=1)
        assert output == [Document(page_content="foo")]

    @pytest.mark.vcr(ignore_localhost=True)
    def test_similarity_search_with_metadata(
        self, weaviate_url: str, embedding_openai: OpenAIEmbeddings
    ) -> None:
        """Test end to end construction and search with metadata."""
        texts = ["foo", "bar", "baz"]
        metadatas = [{"page": i} for i in range(len(texts))]
        docsearch = Weaviate.from_texts(
            texts, embedding_openai, metadatas=metadatas, weaviate_url=weaviate_url
        )
        output = docsearch.similarity_search("foo", k=1)
        assert output == [Document(page_content="foo", metadata={"page": 0})]

    @pytest.mark.vcr(ignore_localhost=True)
    def test_similarity_search_with_metadata_and_filter(
        self, weaviate_url: str, embedding_openai: OpenAIEmbeddings
    ) -> None:
        """Test end to end construction and search with metadata."""
        texts = ["foo", "bar", "baz"]
        metadatas = [{"page": i} for i in range(len(texts))]
        docsearch = Weaviate.from_texts(
            texts, embedding_openai, metadatas=metadatas, weaviate_url=weaviate_url
        )
        output = docsearch.similarity_search(
            "foo",
            k=2,
            where_filter={"path": ["page"], "operator": "Equal", "valueNumber": 0},
        )
        assert output == [Document(page_content="foo", metadata={"page": 0})]

    @pytest.mark.vcr(ignore_localhost=True)
    def test_max_marginal_relevance_search(
        self, weaviate_url: str, embedding_openai: OpenAIEmbeddings
    ) -> None:
        """Test end to end construction and MRR search."""
        texts = ["foo", "bar", "baz"]
        metadatas = [{"page": i} for i in range(len(texts))]

        docsearch = Weaviate.from_texts(
            texts, embedding_openai, metadatas=metadatas, weaviate_url=weaviate_url
        )
        # if lambda=1 the algorithm should be equivalent to standard ranking
        standard_ranking = docsearch.similarity_search("foo", k=2)
        output = docsearch.max_marginal_relevance_search(
            "foo", k=2, fetch_k=3, lambda_mult=1.0
        )
        assert output == standard_ranking

        # if lambda=0 the algorithm should favour maximal diversity
        output = docsearch.max_marginal_relevance_search(
            "foo", k=2, fetch_k=3, lambda_mult=0.0
        )
        assert output == [
            Document(page_content="foo", metadata={"page": 0}),
            Document(page_content="bar", metadata={"page": 1}),
        ]

    @pytest.mark.vcr(ignore_localhost=True)
    def test_max_marginal_relevance_search_by_vector(
        self, weaviate_url: str, embedding_openai: OpenAIEmbeddings
    ) -> None:
        """Test end to end construction and MRR search by vector."""
        texts = ["foo", "bar", "baz"]
        metadatas = [{"page": i} for i in range(len(texts))]

        docsearch = Weaviate.from_texts(
            texts, embedding_openai, metadatas=metadatas, weaviate_url=weaviate_url
        )
        foo_embedding = embedding_openai.embed_query("foo")

        # if lambda=1 the algorithm should be equivalent to standard ranking
        standard_ranking = docsearch.similarity_search("foo", k=2)
        output = docsearch.max_marginal_relevance_search_by_vector(
            foo_embedding, k=2, fetch_k=3, lambda_mult=1.0
        )
        assert output == standard_ranking

        # if lambda=0 the algorithm should favour maximal diversity
        output = docsearch.max_marginal_relevance_search_by_vector(
            foo_embedding, k=2, fetch_k=3, lambda_mult=0.0
        )
        assert output == [
            Document(page_content="foo", metadata={"page": 0}),
            Document(page_content="bar", metadata={"page": 1}),
        ]

    @pytest.mark.vcr(ignore_localhost=True)
    def test_max_marginal_relevance_search_with_filter(
        self, weaviate_url: str, embedding_openai: OpenAIEmbeddings
    ) -> None:
        """Test end to end construction and MRR search."""
        texts = ["foo", "bar", "baz"]
        metadatas = [{"page": i} for i in range(len(texts))]

        docsearch = Weaviate.from_texts(
            texts, embedding_openai, metadatas=metadatas, weaviate_url=weaviate_url
        )
        where_filter = {"path": ["page"], "operator": "Equal", "valueNumber": 0}
        # if lambda=1 the algorithm should be equivalent to standard ranking
        standard_ranking = docsearch.similarity_search(
            "foo", k=2, where_filter=where_filter
        )
        output = docsearch.max_marginal_relevance_search(
            "foo", k=2, fetch_k=3, lambda_mult=1.0, where_filter=where_filter
        )
        assert output == standard_ranking

        # if lambda=0 the algorithm should favour maximal diversity
        output = docsearch.max_marginal_relevance_search(
            "foo", k=2, fetch_k=3, lambda_mult=0.0, where_filter=where_filter
        )
        assert output == [
            Document(page_content="foo", metadata={"page": 0}),
        ]

    def test_add_texts_with_given_embedding(self, weaviate_url: str) -> None:
        texts = ["foo", "bar", "baz"]
        embedding = FakeEmbeddings()

        docsearch = Weaviate.from_texts(
            texts, embedding=embedding, weaviate_url=weaviate_url
        )

        docsearch.add_texts(["foo"])
        output = docsearch.similarity_search_by_vector(
            embedding.embed_query("foo"), k=2
        )
        assert output == [
            Document(page_content="foo"),
            Document(page_content="foo"),
        ]